
2020 OPEN SOURCE SECURITY AND RISK ANALYSIS REPORT

2020
OPEN SOURCE SECURITY
AND RISK ANALYSIS REPORT

 | synopsys.com2020 OPEN SOURCE SECURITY AND RISK ANALYSIS REPORT

Table of contents

Introduction ..1
Industries represented in the 2020 OSSRA report ... 3

2020 Open Source Security and Risk Analysis ..4
The need for a software bill of materials ... 7

Open source composition of codebases audited in 2019 ... 7

What open source components are in use? ... 9

Open source rules! But unpatched vulnerabilities still threaten ..13
Augmenting CVE vulnerability information with BDSAs ...15

Digging deeper into vulnerabilities found in 2019 ..15

High-risk vulnerabilities ...15

Setting vulnerability patching priorities ..18

Open source license and legal developments in 2019 ..20
Open source license risk ...21

Licensing legal developments in 2019 ...23

Examining license risk in open source components ...25

Open source components with no licenses or custom licenses ..26

Operational factors in open source use ...29

Conclusion ..32

Appendix A ...36

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

 | synopsys.com | 12020 OPEN SOURCE SECURITY AND RISK ANALYSIS REPORT | synopsys.com | 1

INTRODUCTION

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software
https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

 | synopsys.com | 22020 OPEN SOURCE SECURITY AND RISK ANALYSIS REPORT

Welcome to the 5th edition of Synopsys’ Open Source Security
and Risk Analysis (OSSRA) report. The 2020 OSSRA includes
insights and recommendations to help security, risk, legal,
and development teams better understand the open source
security and license risk landscape.

To help organizations develop secure, high-quality software,
the Synopsys Cybersecurity Research Center (CyRC)
publishes research that supports strong cyber security
practices. Our annual OSSRA report provides an in-depth
snapshot of the current state of open source security,
compliance, and code quality risk in commercial software.

For over 16 years, security, development, and legal teams
around the globe have relied on Black Duck® software
composition analysis (SCA) solutions and open source audits
to identify and track open source in code, mitigate security
and license compliance risks, and automatically enforce open
source policies using existing DevOps tools and processes.

Synopsys’ Black Duck Audit Services team conducts open
source audits on thousands of codebases for its customers
each year, often supporting merger and acquisition
transactions. In the context of software development, a
codebase is the source code and libraries that underlie an
application, service, or library. These audits are anonymized
and used as the primary source of data for the OSSRA
report. The data is cross-referenced with the Black Duck
KnowledgeBase™ to identify potential license compliance
and security risks as well as open source operational factors
that may affect the overall codebase. The KnowledgeBase
currently houses data on open source activity from over

20,000 sources worldwide, making it an authoritative source
for open source projects and components

The 2019 audit data analysis was conducted by CyRC’s
Belfast and Boston teams. The Boston big data research
team maintains the Black Duck KnowledgeBase, analyzing
and refining open source activity from thousands of data
sources to identify the most significant open source projects
in use. Our Belfast team identifies the impact of open source
vulnerabilities and their exploitability. As well as validating
data used in the OSSRA, the Belfast team’s work forms the
basis of Black Duck Security Advisories (BDSAs), which offer
enhanced vulnerability information that the team discovers,
curates, analyzes, and publishes as a benefit for commercial
Black Duck customers.

This year, the CyRC teams examined anonymized audit
findings from over 1,250 commercial codebases in 17
industries, including Enterprise Software/SaaS; Healthcare,
Health Tech, Life Sciences; Financial Services & FinTech; and
Internet & Software Infrastructure (please see the next page
for a full list).

As this report details, open source components and libraries
are the foundation of literally every application in every
industry. The need to identify, track, and manage open source
has increased exponentially with the growth of its use in
commercial software. License identification, processes to
patch known vulnerabilities, and policies to address outdated
and unsupported open source packages are all necessary for
responsible open source use.

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

 | synopsys.com | 32020 OPEN SOURCE SECURITY AND RISK ANALYSIS REPORT

Industries represented in the 2020 OSSRA report
Percentage reflects amount of open source in codebases by industry

Enterprise
Software/SaaS

Aerospace, Aviation, Automotive,
Logistics, Transportation

Retail &
E-Commerce

Marketing Tech

Healthcare,
Health Tech,
Life Sciences

Internet & Mobile
Apps

Manufacturing, Industrials, Robotics

Cybersecurity

Energy &
CleanTech

Financial Services
& FinTech

EdTech
Internet of Things

Internet &
Software
Infrastructure

Computer Hardware &
Semiconductors

82%

68%

79%

68%

75% 72% 70%

78%83% 78%

68%

65% 64% 63%

50% 46%

69%

Big Data, AI,
BI, Machine
Learning

Virtual Reality, Gaming,
Entertainment, Media

Telecommunications & Wireless

Industries represented in
the 2020 OSSRA report

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

2020 OPEN SOURCE SECURITY AND RISK ANALYSIS REPORT | synopsys.com | 4 | synopsys.com | 4

2020 OPEN SOURCE
SECURITY AND RISK
ANALYSIS

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software
https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

2020 OPEN SOURCE SECURITY AND RISK ANALYSIS REPORT | synopsys.com | 5

...

applications audited

Codebases & open source

99% of codebases audited in 2019
contained open source components.

In 9 of 17 industries, 100% of the codebases
contained open source.

Open source
made up 70%
of the audited
codebases.

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

2020 OPEN SOURCE SECURITY AND RISK ANALYSIS REPORT | synopsys.com | 6

of codebases contained
high-risk vulnerabilities.Vu

ln
er

ab
ili

tie
s

of codebases contained
vulnerabilities.

Operational factors

of codebases had
license conflicts.

Licensing

of codebases
contained unlicensed

software.

of codebases
had components
more than four years
out of date.

of the codebases had
components with no
development activity
in the last two years.

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

2020 OPEN SOURCE SECURITY AND RISK ANALYSIS REPORT | synopsys.com | 7

The need for a software bill of materials
How can development teams know whether they’re
using high-quality open source components? Are those
components’ licenses permissive or restrictive? Are they
one of the most commonly used licenses or variants? Is the
component the most current version? Is that version the most
stable? Is it the most secure? Is there a robust community
actively maintaining the component?

The answers to those questions all begin with a software bill
of materials, commonly referred to as a BOM.

In the November 2019 Gartner research paper “Technology
Insight for Software Composition Analysis,” analyst Dale
Gardner notes that “comprehensive visibility into the open-
source and commercial components and frameworks
used in an application or service must be considered a
mandatory requirement.” Gardner goes on to recommend that
organizations “continuously build a detailed software bill of
materials (BOM) for each application providing full visibility
into components.”1

It may be possible to create and maintain a BOM manually,
although some would argue that it is actually near impossible.
In any case, doing so would require a significant investment
of developer time. In turn, that would affect developer
productivity, leading to higher development costs. “A BOM
generated by an SCA tool provides more comprehensive
information (specific versions, license, etc.),” Gardner
writes, “and potentially a more advanced understanding
of dependency mapping among various components and
frameworks.”2

Indeed, one of the outcomes of a Black Duck Audit is a
comprehensive BOM of the open source components in
any audited codebase, resulting in much of the snapshot
data used in this report. Most SCA solutions also include
the capability for development teams to generate a
BOM themselves to identify, track, and manage the open
source they use. A comprehensive BOM lists not only all
open source components but also the versions used, the
download locations for each project and all dependencies,
the libraries the code calls to, and the libraries those
dependencies link to.

The concept of a software BOM derives from manufacturing,
where the classic bill of materials is an inventory detailing
all the items included in a product. When a defective part is
discovered, the auto manufacturer knows precisely which
vehicles are affected and can begin the process of repair or
replacement. Similarly, maintaining an accurate, up-to-date
software BOM that includes an inventory of third-party and
open source components is necessary for organizations to
ensure their code is high quality, compliant, and secure. And,
as in manufacturing, a BOM of open source components
allows you to pinpoint vulnerable components quickly and
prioritize remediation efforts appropriately.

Open source composition of codebases
audited in 2019
Black Duck Audits found open source in nearly 99% of
codebases audited in 2019. In fact, 100% of the codebases
from nine of 17 industries contained at least one open source
component. Only 1.2% of codebases contained no open

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

2020 OPEN SOURCE SECURITY AND RISK ANALYSIS REPORT | synopsys.com | 8

source components, and virtually all those comprised less
than 1,000 files.

The war between open source and the idea that “we must
use only proprietary code” is long over. Open source won
by convincing the opposition of the benefits of joining the
open source community. “Vulnerabilities in the Core,” a report
published by the Linux Foundation and the Laboratory for
Innovation Science at Harvard in early 2020, explains that
contrary to the popular conception of unpaid programmers
gamely coding open source in their basements, an analysis of
GitHub data found that some of the most active open source
developers contributed to projects under their Microsoft,
Google, IBM, or Intel employee email addresses.3

As one of the report’s authors put it, “Open source was long
seen as the domain of hobbyists and tinkerers. However,
it has now become an integral component of the modern
economy and is a fundamental building block of everyday
technologies like smart phones, cars, the Internet of Things,
and numerous pieces of critical infrastructure.”

Black Duck Audits identified an average of 445 open source
components per codebase in 2019, a significant increase
from 298 in 2018. While the percentage of codebases
containing open source is nearing 100%, there has also been
a dramatic, ongoing increase over the same period of the
percentage of codebases comprising open source, which is
replacing proprietary or commercial off-the-shelf software.

The first OSSRA reported that 36% of the audited code was
open source. That percentage has now nearly doubled to 70%,
up from 60% in 2018.

Our first OSSRA reported that 36% of the code
we audited was open source. That percentage
has nearly doubled in five years to 70%.

 2015 | 36% 70% | 2019

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

2020 OPEN SOURCE SECURITY AND RISK ANALYSIS REPORT | synopsys.com | 9

Even those percentages don’t fully reflect the dominance of
open source in commercial software. Open source allows
developers to innovate faster because they don’t need to
reinvent core functionality. The Black Duck Audit Services
team generally audits codebases from companies whose
business is building software, versus enterprises for whom
software supports their business. The primary value of
software companies is in their proprietary code, and the
ratio of open source to proprietary code in their codebases
tends to be lower than the figures cited by analysts such as
Forrester, who tend to look at enterprise IT groups for their
reports. Analyst firms consistently report that over 90% of IT
organizations use open source software in mission-critical
workloads and that open source often composes up to 90%
of new codebases.

What open source components are in use?
We found that 124 open source components were commonly
used across the codebases of all 17 industries. The top
five open source components (based on the percentage of
codebases containing that component) included:

1. jQuery: a JavaScript library designed to simplify HTML
2. Bootstrap: a CSS framework directed at responsive,

mobile-first front-end web development
3. Font Awesome: a font and icon toolkit
4. Lodash: a JavaScript library that provides utility

functions for common programming tasks
5. jQuery UI: a collection of GUI widgets, animated visual

effects, and themes

See the graphic on the next page for the top 10 open source
components and the percentage of audited codebases
containing that component.

JavaScript was the most commonly used programming
language—found in 74% of the audited codebases. C++,
Shell scripts, and C were found in 50% or more of the audited
codebases. JavaScript was also the leading programming
language of open source components, followed by C++ as
a far second. See the graphics on pages 11 and 12 for more
details.

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

2020 OPEN SOURCE SECURITY AND RISK ANALYSIS REPORT | synopsys.com | 10

Top 10 open source components (percentage of codebases with the component)

30% | Lodash 26% | Minimatch

26% | Visionmedia/debug

26% | isArray

27% | Inherits

28% | Underscore-stay

55% | jQuery

40% | Bootstrap

31% | Font Awesome

29% | jQuery UI

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

2020 OPEN SOURCE SECURITY AND RISK ANALYSIS REPORT | synopsys.com | 11

Top 10 programming languages (percentage of codebases with the language)

50% | C

54% | Shell

57% | C++

74% | JavaScript

25% | Ruby

30% | Perl

36% | C#

36% | TypeScript

40% | Java

46% | Python

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

2020 OPEN SOURCE SECURITY AND RISK ANALYSIS REPORT | synopsys.com | 12

Top 10 languages for open source (percentage of components using the language)

51% | JavaScript

10% | C++

5% | Ruby

7% | Python

7% | Java

4% | Go

4% | C

4% | PHP

4% | TypeScript

3% | C#

2% | Perl

1% | Shell

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

 | synopsys.com | 132020 OPEN SOURCE SECURITY AND RISK ANALYSIS REPORT | synopsys.com | 13

OPEN SOURCE RULES!
BUT UNPATCHED
VULNERABILITIES
STILL THREATEN

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software
https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

 | synopsys.com | 142020 OPEN SOURCE SECURITY AND RISK ANALYSIS REPORT

Most organizations manage hundreds to thousands of
software elements, ranging from mobile apps to cloud-
based systems to legacy systems running on-premises.
That software is typically a mix of commercial off-the-shelf
packages and custom-built codebases, both of which are
increasingly made up of open source components.

As we noted earlier, 99% of the codebases the Black Duck
Audit Services team audited in 2019 contained open source.
Here’s the reality: If your organization builds or simply uses
software, you can assume that software will contain open
source. Whether you are a member of an IT, development,
operations, or security team, if you don’t have policies in place
for identifying and patching known issues with the open
source components you’re using, you’re not doing your job.

The open source community usually issues small updates at
a much faster pace than the average commercial software
vendor. When these updates contain security updates,
companies need to have a strategy to adopt them rapidly. But
because open source updates need to be “pulled” by users,
an alarming number of companies consuming open source
components don’t apply the patches they need, opening their
business to the risk of attack and applications to potential
exploits.

In fact, many organizations are startlingly behind in using the
latest version of any given open source component. As we’ll
detail in the section “Operational factors in open source use,”
82% of the open source components found in our 2019 audits
were out of date.

99% of the codebases the Black Duck Audit
Services team audited in 2019 contained
open source.

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

 | synopsys.com | 152020 OPEN SOURCE SECURITY AND RISK ANALYSIS REPORT

Augmenting CVE vulnerability information
with BDSAs
This year we’re not only reporting the most common CVEs
(Common Vulnerabilities and Exposures) found in the audited
codebases but also augmenting our report with vulnerability
data published by our CyRC security research teams—the
Black Duck Security Advisories (BDSAs).

A BDSA is a classification of open source vulnerabilities
identified by the CyRC security research team. BDSAs
provide early notification of vulnerabilities and deliver
security insight, technical details, and upgrade/patch
guidance.

Timeliness has always been a factor impacting the ability of
the National Vulnerability Database (NVD) to publicize security
vulnerabilities. There is often a significant time lag between
the first disclosure of a vulnerability and its publication in
the NVD, with some research reporting an average 27 days
between initial announcement and NVD publication.4 That
time lag presents a huge window of opportunity for malicious
actors to take advantage of vulnerabilities—an issue that
BDSAs are designed to address.

Digging deeper into vulnerabilities found in
2019
Seventy-five percent of the codebases we audited in 2019
contained at least one public vulnerability—a depressing
increase from the 60% of 2018, nearly returning to the 78%
of 2017. An average of 82 vulnerabilities were identified per
codebase. Four of the top 10 vulnerabilities found in the 2019

audited codebases did not have CVEs associated with them
at the time of this writing. See the graphic on page 16 for the
top 10 vulnerabilities uncovered in our 2019 audits.

The vulnerability addressed by BDSA 2014-0063 (related
to CVE-2015-9251) and discovered in 23% of the audited
codebases concerns security issues in jQuery 1.x and 2.x—
specifically how scripts included in event attributes passed to
the function parseHTML are executed immediately. This could
leave a caller of this function vulnerable to cross-site scripting
attacks if it does not properly sanitize untrusted input before
passing it to the function.

In plain English, if you’re currently using a version of jQuery
earlier than 3.0 in your codebase, you should consider
upgrading to guard against cross-site scripting attacks.

For a complete breakdown of the top 10 vulnerabilities
discovered in our 2019 audits, see the appendix.

High-risk vulnerabilities
Similarly, the percentage of high-risk vulnerabilities increased
to 49% in 2019, as opposed to 40% in 2018.

Slightly more encouraging were the results when we looked
for infamous vulnerabilities. The Apache Struts vulnerability
that was the target of the 2017 Equifax breach did not
appear in any of the over 1,250 codebases audited, nor did
the Heartbleed bug (disclosed in 2014 by members of our
Finnish CyRC team). Concerning that last vulnerability, 2020
marks the first year since we began publishing the OSSRA
report that we did not find Heartbleed in any of our audits of
commercial software. (continued on page 18)

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

 | synopsys.com | 162020 OPEN SOURCE SECURITY AND RISK ANALYSIS REPORT

Top 10 vulnerabilities found (percentage of codebases)

30% | BDSA-2017-2930 (CVE-2015-9251)

36% | BDSA-2015-0110

24% | BDSA-2018-3405 (CVE-2018-14040)

24% | BDSA-2018-3407 (CVE-2018-14042)

25% | BDSA-2018-4634 (CVE-2018-20677)

27% | BDSA-2016-1585

37% | BDSA-2014-0063

37% | BDSA-2015-0567

34% | BDSA-2019-1138 (CVE-2019-11358)

27% | BDSA-2016-1585 (CVE-2016-10735)

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

 | synopsys.com | 172020 OPEN SOURCE SECURITY AND RISK ANALYSIS REPORT

Top 10 high-risk vulnerabilities found (frequency of occurrences across all
codebases)

513 | BDSA-2018-3818 (CVE-2018-16487)

495 | BDSA-2019-2112 (CVE-2019-10744)

106 | BDSA-2018-4597 (CVE-2018-14719)

56 | BDSA-2019-4362 (CVE-2019-10747)

42 | BDSA-2018-2512 (CVE-2018-1000613)

39 | BDSA-2012-0077 (CVE-2012-0881)

39 | BDSA-2015-0001 (CVE-2015-7501)

38 | BDSA-2015-0753 (CVE-2015-6420)

34 | BDSA-2013-0081 (CVE-2013-2185)

33 | BDSA-2016-1636 (CVE-2016-3092)

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

 | synopsys.com | 182020 OPEN SOURCE SECURITY AND RISK ANALYSIS REPORT

Our results notwithstanding, Heartbleed still remains a global
issue, with Shodan reporting over 91,000 instances of the
vulnerability as of late 2019.5

Media publicity certainly played a role in prompting
organizations to identify and resolve those well-known
vulnerabilities. But media attention can’t address the tens of
thousands of equally problematic vulnerabilities, known only
by their CVE listings, which also require identification and
mitigation.

The average age (since first publication) of the vulnerabilities
found in the audited codebases was a little less than 4 ½
years. The percentage of vulnerabilities older than 10 years
was 19%. The oldest vulnerability—at a doddering 22 years—
found in our audits was CVE-1999-0061.

As we noted earlier, 49% of the audited codebases contained
high-risk vulnerabilities. The most common, CVE-2018-16487
(BDSA-2018-3818), a high-risk Lodash prototype pollution
vulnerability affecting versions prior to 4.17.11, appeared over
500 times.

Polluting the prototype of a base object can sometimes
lead to arbitrary code execution. For example, overwriting
the prototype of a default JavaScript object may affect the
behavior of all objects throughout the entire application. If an
object method is hijacked, all objects may become polluted.

Yet another Lodash prototype pollution vulnerability frequently
found in the 2019 scans (495 instances) was CVE-2019-
10744 (BDSA-2019-2112), affecting all versions prior to
4.17.12. The dangers of both vulnerabilities range from
property injection to code injection and denial of service.

Setting vulnerability patching priorities
There is a myth that the proverbial developer can fix each and
every vulnerability, but no one can rationally expect developers
to dig into vulnerabilities their management team hasn’t
prioritized for resolution. Your patch priorities should align
with the business importance of the asset being patched, the
criticality of the asset, and the risk of exploitation.

It’s important to understand that patch policies for
commercial software and open source components need
to differ. While commercial vendors can push updates and
security information, open source patches must originate
from either the root project or the distribution channel where
the component was originally obtained.

Only a fraction of open source vulnerabilities—such as those
affecting Apache Struts or OpenSSL—are likely to be widely
exploited. With that in mind, organizations should prioritize
their open source vulnerability mitigation efforts based on
CVSS (Common Vulnerability Scoring System) scores and
CWE (Common Weakness Enumeration) information, as
well as the availability of exploits, not only on “day zero” of
a vulnerability disclosure but over the life cycle of the open
source component.

Again, the importance of a comprehensive BOM is evident.
To mitigate vulnerabilities, you first must know what
software you’re using and what exploits could impact their
vulnerabilities.

The Common Vulnerability Scoring System (CVSS) is an
industry standard for assessing the severity of a vulnerability.
Vulnerabilities in the National Vulnerability Database (NVD)

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

 | synopsys.com | 192020 OPEN SOURCE SECURITY AND RISK ANALYSIS REPORT

have a base score that aids in calculating the severity and
can be used as a factor for prioritizing remediation. The CVSS
score (v2 and v3) provides an overall base score that takes
both exploitability and impact into account.

Software composition analysis solutions, such as Black
Duck SCA, can also provide customers with a temporal
score in addition to the CVSS base, exploitability, and
impact scores. Temporal scores take into account metrics
that change over time owing to events that are external to
the vulnerability. Remediation levels (“Is there an official
fix available?”) and report confidence (“Is the report
confirmed?”) can help temper the overall CVSS score to an
appropriate level of risk.

Common Weakness Enumeration (CWE) is a list of software
or hardware weaknesses that have security ramifications.

A CWE tells developers which weakness leads to the
vulnerability in question. This information can help you
understand what you’re dealing with and adds one more piece
to assessing the severity of the vulnerability. For example, a
development team may prioritize a SQL injection differently
than a buffer overflow or denial of service.

Is there an exploit of the vulnerability? The existence of an
exploit will raise the risk score and help remediation teams
prioritize highest-risk vulnerabilities first. Understanding
whether there is an existing solution or workaround is another
key piece of information to look to once you have assessed
the overall risk. If you have two medium-risk vulnerabilities
without exploits available, the final determination of which to
fix first might come down to whether either has a solution or
workaround available.

75% of the
codebases
we audited in
2019 contained
at least one
vulnerability.

49% of the
audited
codebases
contained
high-risk
vulnerabilities.

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

 | synopsys.com | 202020 OPEN SOURCE SECURITY AND RISK ANALYSIS REPORT | synopsys.com | 20

OPEN SOURCE
LICENSE AND LEGAL
DEVELOPMENTS IN 2019

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software
https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

 | synopsys.com | 212020 OPEN SOURCE SECURITY AND RISK ANALYSIS REPORT

Open source license risk
According to copyright law, using software in any way
requires permission in the form of a license describing the
rights conveyed to users and the obligations those users
must meet. Despite its reputation for being “free,” open source
software is no different from any other software in that its use
is governed by a license.

An open source license is a type of license that allows the
source code to be used, modified, or shared under defined
terms and conditions. The Open Source Initiative (OSI), a
nonprofit corporation that promotes the use of open source
software in the commercial world, defines open source with
10 criteria and lists 82 OSI-approved licenses, with nine being
“popular, widely used, or having strong communities.” In
contrast, the Software Package Data Exchange® (SPDX®),

Popular open source licenses

which focuses on commonly used licenses, lists some 350-
odd commonly found open source licenses and includes the
concept of deprecated licenses.

The Black Duck KnowledgeBase lists over 2,600 licenses
associated with software whose source is freely available on
the internet. Most of these licenses don’t meet the strict OSI
and SPDX definitions of “open source,” and while many are
acknowledgeable as one-offs, all specify rights, and many
have obligations that users must attend to.

Black Duck analyses indicate that the 20 most popular
licenses cover approximately 98% of the open source in use.
But if your code uses an open source component, whether its
license is one of those popular licenses or some variant, the
license the author applied to it matters.

The following OSI-approved licenses are popular, are widely used, or have strong communities:
	 Apache License 2.0

	 BSD 3-Clause “New” or “Revised” License

	 BSD 2-Clause “Simplified” or “FreeBSD” License

	 GNU General Public License (GPL)

	 GNU Library or “Lesser” General Public License (LGPL)

	 MIT License

	 Mozilla Public License 2.0

	 Common Development and Distribution License

	 Eclipse Public License 2.0

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software
https://opensource.org/licenses/Apache-2.0
https://opensource.org/licenses/BSD-3-Clause
https://opensource.org/licenses/BSD-2-Clause
https://opensource.org/licenses/gpl-license
https://opensource.org/licenses/lgpl-license
https://opensource.org/licenses/MIT
https://opensource.org/licenses/MPL-2.0
https://opensource.org/licenses/CDDL-1.0
https://opensource.org/licenses/EPL-2.0

 | synopsys.com | 222020 OPEN SOURCE SECURITY AND RISK ANALYSIS REPORT

BLACK DUCK ANALYSES
INDICATE THAT THE
20 MOST POPULAR
LICENSES COVER
APPROXIMATELY
98% OF THE OPEN
SOURCE IN USE.

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

 | synopsys.com | 232020 OPEN SOURCE SECURITY AND RISK ANALYSIS REPORT

Licensing legal developments in 2019
As open source becomes more ubiquitous, it has also
become increasingly affected by societal issues, including
both ethical and political issues. 2019 was a particularly
volatile year in the world of open source licensing.

Activist Coraline Ada Ehmke created the Hippocratic License
in 2019, adding the following provision to the MIT License:
“The software may not be used by anyone for systems
or activities that actively and knowingly endanger, harm,
or otherwise threaten the physical, mental, economic, or
general well-being of other individuals or groups, in violation
of the United Nations Universal Declaration of Human
Rights.”

Another example is the JSON License, which essentially
also uses the permissive MIT License with this addition:
“The Software shall be used for Good, not Evil.” In recent
years, owners of many popular projects—notably, all Apache
Foundation projects—have removed code under the JSON
License because of the license’s ambiguity.

Such license additions are often well intended but can
still raise concerns, especially in merger and acquisition
transactions, with lawyers needing to interpret the impact and
risks of such modifications.

Many blockchain projects use open source licenses. In
2019, the Algorand blockchain project, a new blockchain,
announced that its SDKs, example applications, and helper
libraries were licensed under the permissive MIT License.

However, the Algorand node software itself is licensed
under the GNU Affero General Public License (AGPLv3), a
reciprocal license published by the Free Software Foundation.
Reciprocal licenses generally state that if you use a licensed
component (or a derivative) in your software, you must make
your source code available under the same conditions as the
original component. This requirement is usually triggered
when you distribute binaries of your software, but in the case
of the AGPL, the trigger extends to the use of your software
over a network. Additional restrictions cannot be placed on
the licensee’s exercise of the license.

Many companies’ legal or compliance departments restrict
them from using software licensed under the AGPLv3
because of the difficulty of ensuring compliance, which may
jeopardize enterprise adoption of the Algorand project.

In late 2019, the U.S. Supreme Court granted Google’s petition
for certiorari in its ongoing copyright battle with Oracle Corp.
over Google’s use of 37 packages of Oracle’s Java application
programming interface (API) in the Android operating system.
The Supreme Court will review the decision of the lower court
and is expected to address the copyrightability of software
and the defense of fair use.

A growing number of commercial open source companies
have expressed concern that traditional open source licenses
permit cloud service providers to use open source software
without paying for it.

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

 | synopsys.com | 242020 OPEN SOURCE SECURITY AND RISK ANALYSIS REPORT

AS OPEN SOURCE
BECOMES UBIQUITOUS,
IT HAS BECOME
INCREASINGLY
AFFECTED BY SOCIETAL
AND POLITICAL ISSUES.

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

 | synopsys.com | 252020 OPEN SOURCE SECURITY AND RISK ANALYSIS REPORT

In June 2019, CockroachDB—which provides open source
software to store copies of data in multiple locations—
adopted the Business Source License (BSL) restricting
cloud providers from offering a commercial version of
CockroachDB as a service without buying a license from the
company. Redis Labs, providers of an open source database
management system, introduced a hybrid Apache v2.0
license modified with the Commons Clause to limit the use
of its product by cloud service providers. After confusion and
controversy over the hybrid license, Redis created the Redis
Source Available License (RSAL) in March 2019 for certain
modules running on Redis, specifically restricting their use by
database products.

In May 2019, the U.S. Department of Commerce placed
Huawei Technologies Co., Ltd., on its so-called “Entity List,”
a list of companies that are unable to buy technology from
U.S. companies without government approval. Google
immediately pulled Huawei from its Android partner program
and revoked its access to commercially licensed apps and
Google services. While the U.S. Department of Commerce
has granted multiple Temporary General License extensions
to Huawei, there is an important open source aspect to this
situation.

The Android open source license is Apache 2.0 and thus
allows Huawei to continue using the base Android operating
system, even though the base operating system license
doesn’t extend to any applications and proprietary extensions
Google provides to its partners. This is an example of an

“open-core” ecosystem where open source projects are
supported by the commercial interests of vendors building
on the open source project. In the case of Android, Google
provides a number of value-add services via the Google Play
Store but also provides a framework for compatibility testing.
Google then limits access to its APIs for any Android device
that hasn’t passed compatibility testing.

Should all access to Google technologies be restricted
permanently, Huawei can legally fork, or branch, their
operating system from the Android Open Source Project.
Doing so would not be without risk but would also incentivize
Huawei to develop an independent Android experience that
diverges from the one provided by Google. Within open source
projects, forks are commonplace but can lead to independent
ecosystems with differing levels of adoption. Debian vs.
Fedora is a perfect example of this paradigm from the Linux
world. While the situation with Huawei remains fluid (as of
mid-March 2020, the U.S. government has granted its third
temporary license extension), it is possible that the Android
ecosystem will permanently split into two ecosystems: one
based in the U.S. and the other based in China.

Examining license risk in open source
components
Declared license conflicts arise when a codebase contains
open source components whose licenses appear to conflict
with the overall license of the codebase. For example, code
under the GNU General Public License v2.0 (GPLv2) will
generally pose a conflict issue when compiled into a normally
distributed piece of commercial software. But the same code

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

 | synopsys.com | 262020 OPEN SOURCE SECURITY AND RISK ANALYSIS REPORT

is not a problem in software that is considered software-as-
a-service, or SaaS. The obligations of the GPL are triggered
only on distribution of the associated software, and the GPL
doesn’t consider SaaS code to be “distributed.” This is not to
say SaaS software is immune from license conflicts; some
licenses are problematic for SaaS as well.

Black Duck Audits found that 67% of the 2019 audited
codebases contained components with license conflicts,
a percentage virtually unchanged from 2019. By industry,
license conflicts ranged from a high of 93% (Internet &
Mobile Apps) to a relative low of 59% (Virtual Reality, Gaming,
Entertainment, Media).

The GPL is one of the more popular open source licenses, and
its various versions can create license conflicts with other
code in codebases. In fact, five of the top 10 licenses with
conflicts were the GPL and its variants.

Open source components with no licenses or
custom licenses
In the U.S. and many other jurisdictions, creative work is
under exclusive copyright by default—including software
code. Unless a license specifies otherwise (or the creators
grant permission), no one else can legally use, copy, distribute,
or modify that work without incurring the risk of litigation.
Organizations that use code that is unlicensed are at greater
risk of violating copyright law than those using licensed
components.

Black Duck Audits designate a component as “not licensed”
when the author has given no clear grant of license or terms

73% of the 2019 audited codebases contained
components with license conflicts or no
license.

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

 | synopsys.com | 272020 OPEN SOURCE SECURITY AND RISK ANALYSIS REPORT

License conflicts by industry (percentage of codebases)

Internet and Mobile Apps 93%

Manufacturing, Industrials, Robotics 80%

Healthcare, Health Tech, Life Sciences 77%

Internet & Software Infrastructure 74%

Marketing Tech 73%

Internet of Things 72%

Aerospace, Aviation, Automotive, Transportation, Logistics 72%

Big Data, AI, BI, Machine Learning 69%

Energy & CleanTech 69%

Computer Hardware & Semiconductors 66%

Financial Services & FinTech 65%

EdTech 65%

Cybersecurity 64%

Retail & E-Commerce 64%

Telecommunications & Wireless 63%

Enterprise Software/SaaS 60%

Virtual Reality, Gaming, Entertainment, Media 59%

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

 | synopsys.com | 282020 OPEN SOURCE SECURITY AND RISK ANALYSIS REPORT

In 33% of the codebases audited, we found
open source where the author had not given
any clear grant of license or terms of use.

of use in the code or associated files or on the site where
it’s hosted. Thirty-three percent of the codebases audited in
2019 contained components that fit the Black Duck Audits
definition of “not licensed.”

Custom licenses, on the other hand, are software
components where the developer has used their own license
language for the component, whether they’ve created the
license wholesale or added to the language of a standard
license, such as the Hippocratic License we mentioned earlier.
As in the case of that license, lawyers will usually need to
interpret the impact and risks of such modifications to the
original license. In 31% of the codebases audited, Black Duck
Audits found custom licenses that had the potential to cause
conflict, or at least needed legal review, to determine the legal
or business risk.

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

 | synopsys.com | 292020 OPEN SOURCE SECURITY AND RISK ANALYSIS REPORT | synopsys.com | 29

OPERATIONAL FACTORS
IN OPEN SOURCE USE

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software
https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

 | synopsys.com | 302020 OPEN SOURCE SECURITY AND RISK ANALYSIS REPORT

During his examination of the current state of software
composition analysis in “Technology Insight for Software
Composition Analysis,” Gartner analyst Dale Gardner notes,
“Mature organizations are expanding open-source management
to include assessments of the overall ‘health’ of the software,
based on a given package’s provenance and support.”6

As open source use has gained traction over the years, the
focus on managing that open source has also evolved. Most
organizations initially concentrated their efforts on open
source license identification—a key part of any open source
management strategy. As open source use grew in popularity,
a risk beyond license risk emerged: identifying and mitigating
known vulnerabilities, another critical factor of open source
management.

Software “health” can be thought of as the state of an open
source component’s code and whether anyone is maintaining
that code at a given point in time.

One of the reasons behind the popularity of open source
components is that viable open source projects usually
have strong communities improving, updating, and patching
vulnerability issues as they become known. Many developers
don’t bother to vet the health of a community before
downloading an open source component. However, even if a
developer takes care to initially download components from
robust open source communities, there’s no guarantee the
community will remain active in maintaining that component
or the specific version downloaded.

Black Duck Audits conducted in 2019 found that 91% of the
codebases examined contained components that were more

than four years out of date or had no development activity in
the last two years. Besides adding to security risk, the danger
of getting too far behind in versioning is that the simple act
of updating to the latest version can introduce unwanted
functional changes, such as the disappearance of key
features.

Development teams might be concerned that using a
newer version of an open source component will require
modifying other code, causing a ripple effect that could bring
development to a standstill. But many of those outdated
components are the result of an “insert and forget” mindset.
Developers typically don’t add version information about a
component to the inventory spreadsheet before moving on to
other work. Then, as long as the code continues to function
as it’s supposed to, it’s ignored and eventually forgotten.

Eighty-eight of the codebases had components with no
development activity in the last two years, exposing those
components to a higher risk of vulnerabilities and exploits.

All software ages. As it ages, it loses support. With open
source, the number of developers working to ensure
updates—including feature improvements, as well as security
and stability updates—decreases over time. The component
becomes more likely to break without the support needed to
provide fixes.

But at some point, as that open source component ages, it’s
likely to break—or open a codebase to exploit. Without policies
in place to address the risks that legacy open source can
create, organizations open themselves up to the possibility of
issues in their software.

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

 | synopsys.com | 312020 OPEN SOURCE SECURITY AND RISK ANALYSIS REPORT

91% OF CODEBASES
HAD COMPONENTS THAT
WERE MORE THAN FOUR
YEARS OUT OF DATE OR
HAD NO DEVELOPMENT
ACTIVITY IN THE
LAST TWO YEARS.

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

 | synopsys.com | 322020 OPEN SOURCE SECURITY AND RISK ANALYSIS REPORT | synopsys.com | 32

CONCLUSION

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software
https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

 | synopsys.com | 332020 OPEN SOURCE SECURITY AND RISK ANALYSIS REPORT

Five years after the publication of our first OSSRA report, our
message remains the same:

As the data demonstrates, modern applications consistently
contain a wealth of open source components with possible
security, licensing, and code quality issues. How you manage
your open source usage matters greatly. The more diligent
your attention to the differences between commercial
software and open source, the better the outcomes.

If your organization develops software, your codebases
almost certainly include numerous open source
components. The data makes it clear: You need processes
and policies to manage open source components and
libraries; to evaluate and mitigate your open source quality,
security, and license risks; and to continuously monitor for
vulnerabilities, upgrades, and the overall health of the open
source you use.

Whether you are focused on creating the next great software
innovation, buying core technologies to enable you to
address new markets or innovate faster, or planning to buy/
sell technical assets, the attention you pay to open source
governance will pay off with higher quality products.

Here are our recommendations.

Core activity: Inventory your open source now
You can’t possibly address any issues without an up-to-date,
accurate software inventory—a.k.a. a software BOM—that
includes all open source components, the versions in use, and
download locations for each project in use or in development.
The BOM should also include all dependencies, or the

libraries your code is calling to, as well the libraries those
dependencies are linked to.

This first step of creating a BOM is often the most daunting
for many organizations, who worry about the possible impact
of manually creating and maintaining such an inventory on
developer productivity and development costs. If that’s of
concern to your organization, consider the advice of Gartner
analyst Dale Gardner:

“A BOM generated by an SCA tool provides more
comprehensive information (specific versions, license, etc.),
and potentially a more advanced understanding of dependency
mapping among various components and frameworks.”7

Armed with the BOM, you can now manage your risks
properly.

Security teams: Monitor for changes in external threats and
vulnerability disclosures
Public sources, such as the National Vulnerability Database
(NVD), are a good first step for information on publicly
disclosed vulnerabilities in open source software. Keep
in mind, however, that over 115 organizations contribute
entries to the NVD. Not only does the NVD reflect those
organizations’ priorities, but there can be significant lags
in data reporting, scoring, and actionability of the data in a
CVE entry. Also, the format of NVD records often makes it
difficult to determine which versions of a given open source
component are affected by a vulnerability.

These factors make it unwise to rely solely on the NVD for
vulnerability information. Instead, look to a secondary source

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

 | synopsys.com | 342020 OPEN SOURCE SECURITY AND RISK ANALYSIS REPORT

that provides earlier notification of vulnerabilities affecting
your codebase and, ideally, delivers security insight, technical
details, and upgrade and patch guidance.

The job of open source management doesn’t stop when
the codebase ships in an application. Organizations need
to continuously monitor for new threats for as long as their
applications remain in service.

Once a threat has been identified, you’ll need to determine
what remediation needs to be done, assign the remediation
work to the appropriate people, and track the remediation
process: what’s being reviewed, what’s been reviewed, what’s
been fixed, what fixes have been deferred, and what’s been
patched.

Development and legal teams: Create policies to manage
your open source activities
Educate your developers about the need for managed use of
open source. By having clear policies and procedures around
the introduction and documentation of new open source
components, you can help to ensure you’re controlling what
enters the codebase and that it complies with company
policies.

Consider putting in place an automated process that tracks
open source components and their licenses and known
security vulnerabilities, as well as operational risks such as
versioning and duplications, and prioritizes issues based on
their severity.

If you build packaged, embedded, or commercial SaaS
software, open source license compliance should be a key

concern. You’ll need to determine the license types and
terms for the open source components you use and ensure
they’re compatible with the packaging and distribution of
your software. Even companies whose software is not their
product per se are subject to license terms and should pay
heed.

Using your BOM of open source components, you’ll want
to compile detailed license texts associated with those
components so that you can flag any components not
compatible with your software’s distribution and license
requirements. You’ll also want to ensure the obligations of
those licenses have been met, as even the most permissive
open source licenses still contain an obligation for attribution.

You may want to involve your organization’s general counsel—
or seek outside legal advice—as understanding licensing
terms and conditions and identifying conflicts among various
licenses can be challenging. You’ll want to get this right the
first time, especially if you build packaged or embedded
software, as license terms are often more explicit for shipped
software and harder to mitigate after the fact.

M&A teams (buyers and sellers): Perform an open source
due diligence audit
Are you involved in M&A transactions where software is a
major part of the deal? If the software assets are a significant
part of the valuation of the target company, a third party
should audit the code for open source.

All software technology has issues, but it’s critical for both
sellers and buyers to have a clear picture before the deal is
closed so they can address these issues. Risks in software

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

 | synopsys.com | 352020 OPEN SOURCE SECURITY AND RISK ANALYSIS REPORT

include legal risks, primarily around improper licensing;
security risks, or vulnerabilities in the code or design that
could be exploited; and software quality risks. And buyers will
also want to know if the code will have maintenance issues
due to operational factors.

Everyone: Engage with your open source communities!
Open source is the foundation of software development,
and it’s built by people who have taken the time to contribute
their skills and knowledge. But many people who rely on
open source software have little understanding of how open
source communities work or how to contribute to an open
source project. It’s not just code—whether you’re a writer,
translator, designer, event planner, or information security or
legal specialist, you too can play a role in the open source
community.

From a pragmatic standpoint, engaging with the communities
whose open source projects your organization relies on is
one of the best ways to ensure those projects stay healthy,
vital, and up to date. Plus, you get the benefit of learning when
important changes are in the works.

How do you get started? We recommend VM (Vicky)
Brasseur’s Forge Your Future With Open Source, a quick-start
guide on how and when to work on an open source project.

Start making a contribution!

References

1. Gartner, Dale Gardner, Technology Insight for Software Composition Analysis, Nov. 1, 2019.

2. Ibid.

3. Frank Nagle, Jessica Wilkerson, James Dana, and Jennifer L. Hoffman, Vulnerabilities in
the Core: Preliminary Report and Census II of Open Source Software, The Linux Foundation &
The Laboratory for Innovation Science at Harvard, February 2020.

4. NopSec, 2018 State of Vulnerability Risk Management Report, Aug. 2019.

5. Shodan, Heartbleed Report, accessed Apr. 8, 2020.

6. Gartner, Dale Gardner, Technology Insight for Software Composition Analysis, Nov. 1, 2019

7. Ibid.

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software
https://www.amazon.com/Forge-Your-Future-Open-Source/dp/1680503014
https://www.gartner.com/en/documents/3971011/technology-insight-for-software-composition-analysis
https://www.coreinfrastructure.org/wp-content/uploads/sites/6/2020/02/census_ii_vulnerabilities_in_the_core.pdf
https://www.coreinfrastructure.org/wp-content/uploads/sites/6/2020/02/census_ii_vulnerabilities_in_the_core.pdf
http://info.nopsec.com/SOV-2018.html
https://www.shodan.io/report/0Wew7Zq7
https://www.gartner.com/en/documents/3971011/technology-insight-for-software-composition-analysis

2020 OPEN SOURCE SECURITY AND RISK ANALYSIS REPORT

Appendix: Top 10 vulnerabilities found in
2019 audits
BDSA-2014-0063 is a high-severity vulnerability where jQuery
is vulnerable to cross-site scripting (XSS) due to lack of
validation of user-supplied input. A fix is available.

The vulnerability our security advisory classifies as BDSA-
2015-0567 affects all jQuery versions that make use of an
unpatched UglifyJS parser, opening them to arbitrary code
execution through crafted JavaScript files. This high-severity
vulnerability was found in 22% of the audited codebases. A fix
is available.

BDSA-2015-0110 is another high-severity vulnerability.
FileAPI is vulnerable to cross-site scripting (XSS) in the
FileAPI.flash.swf component via the ExternalInterface.call
function. Without input validation, an attacker can cause
arbitrary JavaScript to be executed in a victim’s browser,
which could allow the attacker to obtain sensitive information
such as authentication tokens and user session cookies.
No exploit has been published as of this writing, and a fix is
available.

BDSA-2019-1138 (CVE-2019-11358) concerns an improper
input validation vulnerability discovered in jQuery. An attacker
could exploit this vulnerability to execute cross-site scripting
(XSS) attacks, trigger a denial-of-service (DoS) condition, or
gain unauthorized access to the application. No exploit has
been published as of this writing, and a fix is available.

BDSA-2017-2930 (CVE-2015-9251) explains that jQuery
is vulnerable to cross-site scripting (XSS) due to the way it

processes certain types of Ajax requests. This can allow
potential attackers to execute arbitrary code on the target
system. No exploit has been published as of this writing, and
a fix is available.

The final five BDSAs concern the Bootstrap open source
component and various cross-site scripting (XSS)
vulnerabilities affecting it. BDSA-2016-1585 notes that
Bootstrap is vulnerable to cross-site scripting due to the
insufficient sanitization of user-provided input. An attacker
could execute malicious scripts within a victim’s browser
by tricking them into clicking on a crafted link, allowing the
attacker to obtain sensitive information such as browser
cookies.

BDSA-2016-1212 and BDSA-2018-2744 warn that an
attacker could use Bootstrap XSS vulnerabilities to execute
arbitrary JavaScript in the target’s browser by crafting a
malicious input. Among other bad outcomes, an attacker
could steal an administrator’s session tokens or execute
arbitrary code on their behalf by sending the link to an
unsuspecting user or waiting for them to discover it, or run
malicious scripts on a victim’s browser, should they follow the
attacker’s crafted link.

The last two BDSAs (BDSA-2018-3407 and BDSA-2018-
3405) address reflected XSS vulnerabilities, where an
attacker could cause a user to supply dangerous content to a
vulnerable web application, which is then reflected back to the
user and executed by the web browser.

Exploits have been published for all these Bootstrap
vulnerabilities, and fixes are available for all.

APPENDIX A

 | synopsys.com | 36

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

 | synopsys.com2020 OPEN SOURCE SECURITY AND RISK ANALYSIS REPORT

The Synopsys difference
Synopsys helps development teams build secure, high-quality software, minimizing risks while maximizing speed and
productivity. Synopsys, a recognized leader in application security, provides static analysis, software composition analysis, and
dynamic analysis solutions that enable teams to quickly find and fix vulnerabilities and defects in proprietary code, open source
components, and application behavior. With a combination of industry-leading tools, services, and expertise, only Synopsys helps
organizations optimize security and quality in DevSecOps and throughout the software development life cycle.

About CyRC
The Synopsys Cybersecurity Research Center (CyRC) works to accelerate access to information around the
identification, severity, exploitation, mitigation, and defense against software vulnerabilities. Operating within the
greater Synopsys mission of making the software that powers our lives safer and of the highest quality, CyRC helps
increase awareness of issues by publishing research supporting strong cybersecurity practices.

For more information, go to www.synopsys.com/software.

Synopsys, Inc.
185 Berry Street, Suite 6500
San Francisco, CA 94107 USA

Contact us:
U.S. Sales: 800.873.8193
International Sales: +1 415.321.5237
Email: sig-info@synopsys.com

©2020 Synopsys, Inc. All rights reserved. Synopsys is a trademark of Synopsys, Inc. in the United States and other countries. A list of Synopsys trademarks is available at www.synopsys.com/copyright.html . All other
names mentioned herein are trademarks or registered trademarks of their respective owners. April 2020

CyRC

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software
http://www.synopsys.com/software
mailto:sig-info%40synopsys.com?subject=
http://www.synopsys.com/copyright.html

	Introduction
	Industries represented in the 2020 OSSRA report
	2020 Open Source Security and Risk Analysis
	The need for a software bill of materials
	Open source composition of codebases audited in 2019
	What open source components are in use?

	Open source rules! But unpatched vulnerabilities still threaten
	Augmenting CVE vulnerability information with BDSAs
	Digging deeper into vulnerabilities found in 2019
	High-risk vulnerabilities
	Setting vulnerability patching priorities

	Open source license and legal developments in 2019
	Open source license risk
	Licensing legal developments in 2019
	Examining license risk in open source components
	Open source components with no licenses or custom licenses

	Operational factors in open source use
	Conclusion
	Appendix A

