
87%
OF WEBSITES HAVE
MEDIUM SECURITY

VULNERABILITIES

30%
OF WEB APPLICATIONS

ARE VULNERABLE
TO XSS

9%
OF NETWORKS HAVE

HIGH SECURITY
VULNERABILITIES

46%
OF WEBSITES HAVE

HIGH SECURITY
VULNERABILITIES

Web Application
Vulnerability Report
2019

Contents

Introduction

Methodology

The Dataset

Vulnerabilities at a Glance

	 High Severity

	 Medium Severity

Vulnerability Severity

Remote Code Execution

SQL Injection (SQLi)

Local File Inclusion and Directory Traversal

Cross-site Scripting (XSS)

Vulnerable JavaScript Libraries

Weak Passwords

Source Code Disclosure

Server-side Request Forgery

Overflow Vulnerabilities

Perimeter Network Vulnerabilities

DoS Related Vulnerabilities

Cross-site Request Forgery

Host Header Injection

Directory Listing

TLS/SSL Vulnerabilities

WordPress Vulnerabilities

Web Server Vulnerabilities and Misconfigurations

Conclusion

About Acunetix

3

4

5

6

6

7

8

9

10

12

13

14

15

16

17

18

19

20

21

22

22

23

24

25

26

27

Acunetix Web Application Vulnerability Report 2019 2

Welcome to the 2019 edition of
the Acunetix Web Application
Vulnerability Report

Every year, Acunetix crunches data compiled from

Acunetix Online into a vulnerability testing report that

portrays the state of the security of web applications and

network perimeters. This year’s report contains the results

and analysis of vulnerabilities detected over the previous

12 months, across 10,000 scan targets.

Cross-site Scripting (XSS) vulnerabilities, vulnerable

JavaScript libraries, and WordPress related issues were

found to each claim a significant 30% of the sampled

targets. This result continues to reinforce the argument

that web applications are both a viable attack vector for

attackers and present a low barrier to entry.

In addition, it ’s becoming clearer that vulnerabilities such

as SQL injections – which have been wreaking havoc for

years all over the internet – are finally falling in numbers.

While this is positive, we also see how other serious

vulnerabilities are rising in frequency. Cross-site Scripting

(XSS) vulnerabilities claim a major slice of the pie. And it is

worrying that a significant amount of targets also include

JavaScript libraries with known vulnerabilities in them.

These instances constitute a very serious concern for

client-side security as a whole.

For the purpose of this analysis, a random sample of

10,000 successfully scanned targets were randomly

selected. The analysis focuses predominantly on high and

medium severity vulnerabilities found in web applications,

as well as perimeter network vulnerability data.

Web applications are steadily becoming more feature rich

and complex. This technological complexity is a natural

result of increasing consumer demands for an ever

more engaging web. In response to this, many Software

Development and Operations teams have had to increase

the frequency with which they release new versions of

their web applications. While DevOps agility provides

organizations with faster release cycles, it also means that

web security becomes harder to scale.

Web application vulnerabilities are dangerous for many

reasons. Public breaches risk damage to a company’s

brand and reputation. And in an era where privacy is

more important than ever, regulations such as GDPR

have significantly raised the stakes in terms of financial

penalties and data breach disclosure.

The web has changed, and with it, so has the threat

landscape. On the client-side, the web browser is now an

incredibly powerful ecosystem – one that can be abused

to invade victims’ privacy, steal their money or even use

their CPU to mine cryptocurrency (Cryptojacking). On

the server-side, the versatility of the web as a common

platform means that, increasingly, web applications

and web services have replaced legacy applications.

The consequence of this is a more expansive landscape

for attackers to exploit. This is particularly true since

traditional network-layer security defenses such as

firewalls and intrusion detection systems (IDS) are

ineffective at detecting or preventing web application

attacks.

This report aims to provide you with an overview of

the most commonly encountered web application and

network perimeter vulnerabilities. Additionally, we

hope this report will serve as a signpost for where web

vulnerabilities security is headed over the next few years.

Introduction

Acunetix Web Application Vulnerability Report 2019 3

Data gathered and analyzed for this report was sourced

from the results of automated web application and

network perimeter security scans run from Acunetix

Online, Acunetix’s SaaS, cloud-based web and network

perimeter scanner. This data was collected over a 12

month period, across 10,000 randomly selected scan

targets. Evaluation scans on the intentionally vulnerable

Acunetix test web applications were omitted from the

scope of this analysis.

The Anatomy of an Automated Web Scan

The majority of automated web application scans run by

Acunetix Online are black box or Dynamic Application

Security Testing (DAST) scans. This means that the web

scanner has no knowledge of the backend code running

on the website or the web application it is about to scan.

Acunetix Online can also run gray box or Interactive

Application Security Testing (IAST) scans by leveraging

Acunetix’s AcuSensor technology. This is a sensor that can

be installed on the server side for Java, ASP.NET and PHP

web applications. AcuSensor brings together the best of

dynamic testing, by relaying feedback from sensors within

the source code back to Acunetix while it is executing.

Automated web application security testing and

vulnerability management processes tend to follow four

major stages in most organizations. Each is outlined

below.

Crawling and Scanning

Scanning a website or web application first involves

crawling it. Acunetix’s crawler analyzes the structure of

a web application by looking for links and inputs, and

by running JavaScript like a real browser. The crawler

supports HTML5 and ECMAScript 6 and 7 technologies. It

can automatically detect commonly used JSON and XML

input schemes, as well as more exotic input schemes like

Google Web Toolkit (GWT), in addition to the typical GET

and POST parameters.

An accurate crawl is crucial for a scan to have good

coverage throughout, since the scanner cannot test a page

for vulnerabilities until it is aware of its existence. After

completing a crawl, Acunetix automatically tests every

page it found for hundreds of security vulnerabilities.

Reporting

After the scan returns some results, the next step is to

interpret the findings identified by the scanner. Results

are displayed on the Dashboard in real-time, and you can

start working on them even before the scan finishes. In

addition, scan results can be exported to a comprehensive

list of management and compliance reports, including

reports for PCI DSS, OWASP Top 10, HIPAA, ISO 27001 and

others.

Remediation

Accurate scan results alone are not useful unless the

vulnerabilities are fixed. As well as detailed information

about discovered vulnerabilities, Acunetix also provides

out of the box vulnerability management tools and

integrations with issue trackers such as Atlassian, JIRA

and GitHub. It can virtually patch vulnerabilities by

configuring common Web Application Firewalls. Acunetix

easily integrates with Continuous Integration (CI) and

Continuous Deployment (CD) tools like Jenkins. Finally,

Acunetix even supports Continuous Scanning, running a

quick scan every day in addition to a more comprehensive

scan once a week to ensure that detected vulnerabilities

rapidly move from discovery to remediation.

Methodology

Acunetix Web Application Vulnerability Report 2019 4

The data analyzed in this report is gathered from the automated web and network perimeter scans run on the Acunetix

Online platform. The analysis in this report is based predominantly on high and medium severity vulnerabilities found in web

applications, as well as perimeter network vulnerability data.

The Dataset

223,000,000
AVERAGE HTTP
REQUESTS SENT
PER MONTH

1,276,00
AVERAGE LOCATIONS
SCANNED PER MONTH

10,000
SCAN TARGETS

76,686
WEB SCANS

67,355
NETWORK SCANS

135,760
AVERAGE VULNERABILITY
ALERTS TRIGGERED
PER MONTH

Figure 1.

The Dataset Analysis.

Acunetix Web Application Vulnerability Report 2019 5

This section lists all the detected vulnerabilities from our research.

Vulnerabilities by Type

The charts lists vulnerabilities by type. They are grouped by vulnerability severity level.

Vulnerabilities at a Glance

High Severity

This chart illustrates the vulnerability types found which fall into our High Severity category.

0

9%

18%

25%

38%

50%

0

500

1000

1500

2000

2500

Web Serve
r V

ulnera
bilit

ies

Vu
lnera

ble JS
 Libra

rie
s

Weak
 Pas

sw
ord

s

Source
 Code D

isc
losu

re

Word
Pre

ss
 Vu

lnera
bilit

ies
XSS

LFI /
Dire

cto
ry

Tr
av

ers
al

SQLi
RCE

Netw
ork

(FTP)

Netw
ork

 (M
ail

)

Netw
ork

 (D
NS)

Netw
ork

 (S
SH)

Ove
rfl

ow
 Vu

lnera
bilit

ies
SSRF

Figure 2.

High Vulnerabilities Analysis.

Acunetix Web Application Vulnerability Report 2019 6

Vulnerabilities at a Glance

0

9%

15%

30%

45%

60%

0

500

1000

2500

4000

6000

TLS/S
SL Vu

lnera
bilit

ies

Dire
cto

ry
List

ing

Host
Head

er I
njecti

on
CSRF

DoS

Medium Severity

This chart lists the vulnerabilities types found that fall into our Medium Severity Category.

Figure 3.

Medium Vulnerabilities Analysis.

We utilize Acunetix to more thoroughly assess internet-facing websites
and servers. Acunetix helps us identify vulnerabilities in conjunction
with other vulnerability scanning applications. Acunetix has been a
more reliable application when discovering / determining different
types of malicious code injection vulnerabilities (SQL, HTML, CGI, etc).

“

Carter Horton, Assoc. Information Analyst, GD Information Technology

Acunetix Web Application Vulnerability Report 2019 7

Vulnerabilities are weaknesses in a
system, such as a web application,
network perimeter device, or an
appliance. Vulnerabilities create
security threats – negative events
that can lead to an undesired
outcome, as well as unknown and
potentially more significant damage.

Not all vulnerabilities threaten an organization in the
same way, because different vulnerabilities have different
impacts given where and how they’re exploited. While
it ’s essentially impossible to provide a metric that will
work for every organization in all situations, Acunetix
uses vulnerability severity as a way of classifying the

potential impact a given security vulnerability poses.
In turn, organizations can use additional vulnerability
management features such as Business Criticality
within Acunetix to better map out the degree to which a
vulnerability may become a business risk.

The Severity Level of a vulnerability is therefore assigned
based on the impact of that vulnerability if successfully
exploited, together with the degree of difficulty involved
in exploiting it. The result of a successful attack could vary
from information disclosure to a complete compromise of
applications or systems.

The following gradation provides a description of the
impact of each vulnerability Severity Level in the results of
this analysis.

Medium Severity Low Severity

This level indicates that an attacker can

compromise the confidentiality, integrity or

availability of a target system in a limited

way. Specialized access, user interaction,

or circumstances that are beyond the

attacker’s control is required for an

attack to succeed. It needs to be used in

conjunction with other vulnerabilities in

order to escalate an attack.

This level indicates that an attacker can

partially compromise the confidentiality,

integrity or availability of a target system.

Specialized access, user interaction,

or circumstances that are beyond the

attacker’s control may be required for

an attack to succeed. It is very likely

to be used in conjunction with other

vulnerabilities to escalate an attack.

High Severity

This level indicates that an attacker can

fully compromise the confidentiality,

integrity or availability of a target system

without specialized access, user interaction

or circumstances that are beyond the

attacker’s control. It is very likely to allow

lateral movement and escalation of the

attack to other systems on the internal

network of the vulnerable application.

Vulnerability Severity

Acunetix Web Application Vulnerability Report 2019 8

Vulnerability Analysis
Remote Code Execution

Remote Code Execution (RCE) is
usually the worst case scenario
in a web application attack, since
it allows an attacker to execute
arbitrary code within a web
application.

This can be escalated to running operating system

commands. An attacker may gain persistence by using a

reverse shell. A reverse shell is a commonly used method

for an attacker to gain interactive control of the victim

machine by having it initiate an outbound connection to

the attacker.

The attacking machine would have a listener port

on which it receives the connection. This method is

frequently used due to its ease as a method for bypassing

firewall restrictions, since – unlike inbound connections –

outbound connections are typically allowed, or at least lax.

Once an attacker gains control of a system through RCE,

the potential is there for the attacker to take over the

system entirely. If an attacker gains access to a single

system, they can attempt to achieve lateral movement by

compromising connected systems.

They can achieve this by taking note of resources on the

internal network and seeking opportunities for collecting

additional credentials and abusing local privilege

escalation vulnerabilities.

Analysis

Two percent of sampled targets were found to be

vulnerable to RCE. While it is fortunate that this

vulnerability is not more prevalent, given its potential

impact, this is still an alarming figure.

While there are some cases where the execution of

arbitrary code or, more commonly, operating system

commands, is required, such cases should be remediated

immediately, and follow up steps taken to ensure they are

less likely to occur again.

Figure 4.

RCE Analysis.

RCE

2%[165]

Acunetix Web Application Vulnerability Report 2019 9

https://www.acunetix.com/blog/articles/code-injection/

SQL injection (SQLi) is a type of attack in which a hacker

can take advantage of the insecure SQL query a web

application makes to a database server (such as MySQL,

Microsoft SQL Server and Oracle). It exploits weaknesses

in a web application that are usually the result of poor

development practices or mistakes. Using an SQL

injection, an attacker can send SQL commands to the

database server, allowing them to gain unauthorized

access to data or, in extreme cases, even take over the

entire system on which the database server is running.

SQL injections are among the oldest, most prevalent and

dangerous web application vulnerabilities. Since SQL

injections affect web applications that make use of an SQL

database, virtually every type of web application needs

to pay attention to it. SQLi also happens to be one of the

most well-understood web application vulnerabilities, with

hundreds of free, ready-made tools to make it quicker and

easier for attackers to take advantage of SQL injection

vulnerabilities.

By abusing an SQL injection vulnerability, an attacker may

be able to bypass a web application’s authentication and

authorization mechanisms, retrieve the contents of an

entire database, and even add, modify and delete records

in that database, impacting its data integrity.

In this worst-case scenario, SQL
injections can provide an attacker
with unparalleled access to sensitive
data, such as customer data,
Personally Identifiable Information
(PII) and other sensitive information.

While SQLi is usually used by attackers to steal data from

databases, such vulnerabilities may be escalated to gain

even further access, especially if the database server

is not correctly configured or is configured insecurely.

For instance, an attacker may take advantage of an

SQL injection vulnerability and use it to delete valuable

records, or even entire tables from a database, effectively

causing a Denial of Service attack. In other cases, an

attacker may use the SQL injection vulnerability to write

files in the system. This can potentially lead to an attacker

uploading a web shell onto the server and subsequently

taking over the entire server, or pivoting into other

systems.

SQL Injection (SQLi)

Figure 5.

SQLi Analysis.

SQLI
14% [1,328]

BLIND SQLI
8% [776]

UNION/
EROR SQLI

6% [552]

Acunetix Web Application Vulnerability Report 2019 10

https://www.acunetix.com/websitesecurity/sql-injection/

Blind SQL Injection is a variation of
SQLi which is usually used by an
attacker as a last resort when faster
ways to exploit the SQL injection
vulnerability are not possible.

This does not mean that SQLi would not be possible.

However, the attack does take significantly longer, and

in some cases it may be easier to detect due to the sheer

volume of requests an attacker needs to send.

The reason for this is that the attack is ‘blind’. In such an

attack, an attacker can not simply display data within the

response received from the web application. Instead, the

attacker must use a side channel to retrieve the data they

want. For example, an attacker may be able to retrieve data

from the database through a Blind SQLi vulnerability, by

sending crafted queries to the database server containing

logical statements, and asking the database server to wait

a specified amount of time if a condition is true.

Analysis

Fourteen percent of sampled targets were vulnerable

to at least one SQL injection. This figure has been slowly

decreasing: it went from 26% (2015) to 14% (2018),

indicating that developers are becoming wiser to SQLi and

its perils. With support for parameterized SQL queries in

nearly all major programming languages and frameworks,

SQL injection should be a very well understood problem

and easy to prevent. The reality, however, is that due to a

cocktail of legacy applications, developers may not yet be

fully aware of the dangers of SQLi. Human error, mixed

with old habits, is difficult to overcome.

Unsurprisingly, Blind SQLi (8%) was found to be a more

prevalent SQL injection vector than others (UNION and

error-based SQL injection). This is primarily due to the

fact that many application developers suppress database

error warnings.

Blind SQL Injection

Figure 5.

SQLi Analysis.

SQLI
14% [1,328]

BLIND SQLI
8% [776]

UNION/
EROR SQLI

6% [552]

Acunetix Web Application Vulnerability Report 2019 11

https://www.acunetix.com/websitesecurity/blind-sql-injection/

Local File Inclusion (LFI) and
Directory Traversal are similar
vulnerabilities with very different
outcomes.

Directory Traversal or Path Traversal attacks manipulate

web application inputs by using the dot-dot-slash (../)

sequences, or similar variations. The ../ (or sometimes ..\

in Windows systems) is a convention indicating that you go

up (traverse) a directory (folder). This means that if a web

application is designed to read a file from the filesystem,

and the attacker has control over the filename, they can

simply replace it with something similar to ../../../etc/

passwd and gain access to that system’s files.

An attacker can not only read any file to which the web

server has access, but on Linux systems, an attacker can

also read data from the /proc virtual filesystem. This can

be used by the attacker to gain information about the

operating system’s kernel version, mounted file systems,

routing table and other attributes that can lead to

information disclosure.

While it is possible for an attacker to use an LFI

vulnerability in a similar way to a Directory Traversal

vulnerability, unlike Directory Traversal (which only

allows an attacker to read files), LFI is a type of inclusion

vulnerability. This means that it includes files and executes

them as code.

Developers, especially in languages such as PHP and JSP,

make frequent use of ‘includes’ to avoid repeating code

across multiple pages. If an attacker can combine a Local

File Inclusion vulnerability with a malicious file upload

vulnerability, then the attacker can escalate the LFI to a

Remote Code Execution (RCE).

Analysis

Two percent of sampled targets were vulnerable to

Directory Traversal, while a further 1% of targets were

found to be vulnerable to Local File Inclusion.

While it is not always straightforward for an attacker

to escalate an LFI vulnerability up to a Remote Code

Execution attack, the vulnerability is certainly not

something to take lightly.

Also, Directory Traversal attacks may provide an attacker

with crucial information about the internal workings of

an application, as well as the host system it is running on,

making it a serious information disclosure concern.

Local File Inclusion & Directory Traversal

Figure 6.

LFI and Directory Traversal Analysis.

LFI/ DIRECTORY
TRAVERSAL

2% [217]

LFI
1% [79]

DIRECTORY
TRAVERSAL

2% [138]

Acunetix Web Application Vulnerability Report 2019 12

https://www.acunetix.com/blog/articles/local-file-inclusion-lfi/
https://www.acunetix.com/websitesecurity/directory-traversal/

Cross-site Scripting (XSS), unlike
most vulnerabilities that affect
server-side resources, is a
vulnerability that arises on the
client side. Cross-site Scripting can
be thought of as a client-side code
injection that occurs, predominantly,
through the use of JavaScript.

Cross-site Scripting vulnerabilities can be classified in the

following ways:

Stored (Persistent) XSS

Reflected (Persistent) XSS

DOM-based XSS

While there are a number of variations of XSS, all cases
follow a similar pattern. The attacker’s objective is
to make a victim inadvertently execute a maliciously
injected script, that runs in the context of a trusted web
application. The purpose of this is to steal sensitive data
to which the user has access, or even to modify the layout
of the web application so that the user is encouraged
to submit sensitive data to the attacker. An attacker’s
malicious script is often referred to as a (malicious)
payload.

Stored (Persistent) XSS attacks allow an attacker to inject
a payload that is permanently stored (persisted) by the
target application and ‘echoed’ back when a victim visits
a page. Stored XSS is the most dangerous type of XSS
because the attacker only needs to make a single request,
so it can affect any victim who visits the page. One of the
most famous examples of a stored XSS attack is the Samy
Worm, a (thankfully harmless) worm that spread through
MySpace back in 2005.

Reflected XSS attacks allow an attacker to trick a victim
into following a link containing an XSS payload (usually
achieved through phishing or other types of social
engineering). Once the payload is sent to a web page
vulnerable to reflected XSS, the payload is included back
(reflected) as part of the HTTP response from the server.

DOM-based XSS is an advanced type of XSS that allows a
skilled attacker to craft a payload. This payload is executed
as a result of legitimate JavaScript modifying the Document
Object Model (DOM) in a victim’s browser. In contrast to
the other types of XSS, with DOM-based XSS the payload
is often not present within the HTTP response. Client-side
code designed to process elements in the DOM (referred
to as a DOM-XSS sink) executes the malicious payload that
has been injected in a DOM element that the attacker has
control over (referred to as a DOM-XSS source).

When a web application is vulnerable to XSS, it executes
the attacker-supplied content from a source that the
application implicitly trusts, rather than treating that input
as untrusted and encoding or filtering it appropriately.
In each case, XSS results in the browser interpreting
the attacker’s payload as legitimate JavaScript code and
subsequently executing it.

Cross-site Scripting (XSS)

Acunetix Web Application Vulnerability Report 2019 13

https://www.acunetix.com/websitesecurity/cross-site-scripting/

The consequences of Cross-site Scripting are not
immediately obvious. This is especially true since modern
web browser vendors take security seriously, and take
several precautions when running JavaScript within a
sandboxed environment. However, if you consider that an
attacker’s JavaScript payload has access to all the same
objects as the rest of the web page, including access to
cookies (often used to store session tokens), an attacker
may easily impersonate users, steal sensitive data or trick
users into divulging sensitive information.

Browser vendors have made efforts to filter reflected
XSS in order to make it harder for attackers to carry out
reflected XSS attacks. But attackers are good at evading
filters. Additionally, modern browsers now incorporate
Content Security Policy (CSP) in an effort to make XSS
harder for an attacker to abuse. Unfortunately, CSP’s
adoption is still very low, and it may be incredibly tricky for
some sites to implement properly.

Analysis

A staggering 32% of sampled targets were vulnerable to
one form or another of Cross-Site Scripting. XSS, combined
with social engineering, makes it possible for attackers
to steal cookies and impersonate users, and engage in
keylogging, phishing and identity theft.

Critically, XSS vulnerabilities provide attackers just what
they need to convert attacks to more serious ones.

Vulnerable JavaScript libraries, like many other software

supply chain tools and technologies, were created to make

development faster and easier. Several web applications rely

on old or outdated JavaScript libraries (i.e. old and vulnerable

versions of jQuery) opening the door to Cross-site Scripting

vulnerabilities.

Analysis

A phenomenal 33% of sampled targets were found to use

JavaScript libraries with known XSS vulnerabilities. The most

frequently encountered vulnerable JavaScript libraries were

old versions of jQuery and jQuery UI, followed by old versions

of Moment.JS and the YUI Library.

Vulnerable JavaScript Libraries

JQUERY UI

7%[620]
JQUERY MIGRATE

1%[101]

MOMENT.JS

1%[72]

JQUERY

26%[2407]

YUI

1%[65]

Figure 8.

Vulnerabilities JavaScript Analysis.

DOM-BASED XSS

1%[53]

XSS

32%[2,914]

Figure 7.

XSS Analysis.

Acunetix Web Application Vulnerability Report 2019 14

Weak passwords are usually short, commonly-used words

or defaults that can be easily guessed by an attacker

when they encounter a login prompt. In some cases, weak

passwords may be guessed by running a dictionary attack,

using common dictionary words and common passwords,

names, words based on the username or variations on

these themes. In many other cases, weak passwords are

simply default username and password combinations like

admin/admin or admin/password.

Weak passwords are the chink in the armor of even a well-

defended system. They allow an attacker to easily gain

access to administrative portals, where they can make

configuration changes, upload files or perform other

actions in order to escalate their attack.

Analysis

One percent of sampled targets were found to use weak

or default passwords. Considering that this is both a trivial

matter to resolve, as well as potentially very dangerous

(depending on the system to which an attacker may gain

access), it ’s good to discover that this vulnerability is not

more prevalent.

Weak Passwords

WEAK PASSWORDS

1%[79]

Figure 9.

Weak Passwords Analysis.

Acunetix Web Application Vulnerability Report 2019 15

Source code is best kept away from an attacker’s prying

eyes, especially if the software running is not open

source. If it is open source, an attacker already has

access to it. If it isn’t open source, it may contain clues

about other vulnerabilities an attacker could exploit to

gain access to a system.

Even if the software run is open source, many software

packages configure secrets and other important

parameters within source files which are then uploaded to

the server and used by the respective application during

runtime. But regardless of the source code’s licensing

status, it ’s best that potential attackers are simply unable

to explore your website or web application’s source code.

Source code and related configuration files may divulge

sensitive configuration information about database

credentials, or information on how your web application

functions. An attacker could employ this information

to escalate an attack by exploiting other vulnerabilities

or misconfigurations discovered through the disclosed

source code or configuration files.

Analysis

Four percent of sampled targets were found to contain

one or more instances of Source Code Disclosure. This

vulnerability could provide an attacker with crucial

information about the inner workings of an application.

It could be an opportunity for them to download and

analyze the source code for additional vulnerabilities,

comments or even hints about the underlying

infrastructure on which the application runs.

Source Code Disclosure

SOURCE CODE
DISCLOSURE

4%[395]

Figure 10.

Source Code Disclosure Analysis.

Acunetix Web Application Vulnerability Report 2019 16

https://www.acunetix.com/blog/articles/source-code-disclosure-dangerous/

Server Side Request Forgery (SSRF) allows an attacker to

create (forge) requests from a vulnerable server. While

this may not seem immediately useful, SSRF becomes very

dangerous when an attacker can forge requests to internal

systems, or even services running on localhost.

SSRF is useful to an attacker who wants to bypass

firewall controls. By sending and receiving responses to

requests made to systems that sit on internal networks

behind firewalls, an attacker may be able to access and

further exploit hosts and services not accessible from

the outside world. Internally deployed systems that

are particularly vulnerable to SSRF are those which, by

default, do not require authentication, or which provide

some results without authentication. Examples of such

services are databases (Elasticsearch, MongoDB), caching

(Memcached, Redis), service discovery (Consul, Etcd), and

monitoring systems (Prometheus, Graphite).

SSRF may also be used to list and even exploit other

internal web applications containing vulnerabilities of

their own.

Analysis

One percent of sampled targets were found to be

vulnerable to Server Side Request Forgery. While not as

widespread as other high severity vulnerabilities such as

SQL injection or Remote Code Execution, SSRF can have

major potential impacts. Once an attacker can make

requests to an internal network, they may easily access

services which lack authentication, launch Denial of Service

attacks against internal services, or conduct in-depth

reconnaissance on an internal network.

Server-side Request Forgery

Figure 1.

Vulnerabilities Analysis.

SSRF

1%[70]

Figure 11.

SSRF Analysis.

Acunetix Web Application Vulnerability Report 2019 17

https://www.acunetix.com/blog/articles/server-side-request-forgery-vulnerability/

Overflow vulnerabilities, such as buffer overflow, stack

overflow, and heap overflow, exist when a program

does not exercise proper bounds checking. As a result of

this, user input may overflow the buffer’s boundary and

overwrite adjacent memory locations, while writing data to

the buffer.

Overflow vulnerabilities will only occur in programs written

in languages that are not memory safe (C and C++).

Overflow vulnerabilities can corrupt data, crash programs,

or, in many cases, even allow the execution of malicious

code. This makes overflow vulnerabilities incredibly

destructive in software used to run web applications or

network infrastructure, such as web servers, routers, and

mail servers.

Analysis

Five percent of sampled targets were found to be

vulnerable to types of Overflow vulnerabilities, like buffer

overflows, integer overflows, heap overflows and stack

overflows.

Overflow Vulnerabilities

OVERFLOW
VULNERABILITIES

5%[475]

Figure 12.

Overflow Vunerabilities Analysis.

Acunetix Web Application Vulnerability Report 2019 18

Resources residing on the network perimeter are usually

devices or services designed to be internet facing. Examples

of these are router’s VPNs and firewalls, web servers and

load balancers, and even DNS and mail servers. In most

cases, vulnerabilities within such services can be traced

to old versions of some critical piece of software; in other

cases, misconfigurations are to blame.

Since many organizations have already moved a significant

portion, if not all, of their infrastructure to one or more

public clouds, the perimeter is no longer as clear-cut as it

used to be. Instead, the perimeter is constantly changing to

include everything from corporate on-premise firewalls to

web server infrastructure in the cloud.

A vulnerability or misconfiguration in a critical service may

result in serious information disclosure or even bypass

authentication controls, allowing an attacker to escalate

an attack.

Analysis

Nineteen percent of sampled targets were found to be

vulnerable to SSH-related vulnerabilities.

Six percent of sampled targets were found to be

vulnerable to FTP-related vulnerabilities, the majority of

these vulnerabilities being low-severity vulnerabilities or

misconfigurations. Most of the issues identified revolve

around information and version disclosure of FTP servers.

Two percent of sampled targets were found to be

vulnerable to Mail-related vulnerabilities.

Two percent of sampled targets were found to be

vulnerable to DNS-related vulnerabilities.

Perimeter Network Vulnerabilities

0

1000

2000

3000

4000

5000

0

9%

18%

25%

38%

50%

Network Web Application

Medium

High

Figure 13.

Perimeter Network Analysis.

Acunetix Web Application Vulnerability Report 2019 19

Denial of Service (DoS) is a category
of attack in which an attacker aims
to render a system non-responsive
for a period of time, usually by
overwhelming or ‘flooding’ the target
with traffic, so that legitimate traffic
is prevented or interrupted.

Traditionally, DoS attacks focus on exhausting resources of

network infrastructure devices or services such as routers,

load balancers and web servers in a volumetric Denial of

Service attack. While volumetric attacks are increasingly

common on the internet, attackers can also take advantage

of a less common, but potentially more damaging, type of

DoS attack – Application-based Denial of Service.

Since DoS attacks make servers, services or network

infrastructure unavailable to its intended users, depending

on the impacted systems, it may result in a loss of business

as well as increased costs associated with additional

resource use in addition to the extra data transfer costs

required to stay online. DoS vulnerabilities are also among

the hardest to defend against, as there is often no foolproof

way of stopping them.

In an Application-based Denial of Service incident, an

attacker focuses on sending fewer requests (less expensive

for the attacker) which cause more damage to the target

(more expensive for the victim). An example of such a

request is if an attacker discovered that an API endpoint

of a web application had to complete a lot of processing

before returning a result.

They could conclude that such a request returned a lot of

data and took a long time to process a result, and then

send requests to that specific endpoint to bring the web

application down more quickly.

Analysis

Eighteen percent of sampled targets were found to be

vulnerable to Denial of Service vulnerabilities, while 13%

were vulnerable to a specific kind of application-level DoS

known as Slow HTTP Denial of Service (also known as

Slowloris).

Slowloris is an attack that allows an attacker to use up all

of a web server’s connections with minimal bandwidth. The

attacker achieves this by sending HTTP requests to a web

server without closing the connection. This causes the web

server to run out of the maximum HTTP open connections

allowed. As a result, the server drops requests made by

legitimate users until the attack ends.

Given the business impact associated with DoS attacks,

they should be taken seriously. But mitigating DoS attacks

is difficult and no one is immune to them, especially if

an attacker has sufficient resources. However, there is

much that can be done to mitigate application-level DoS

vulnerabilities like the Slow HTTP DoS attacks, to make it

harder for attackers to achieve DoS through the use of

simple vulnerabilities.

DoS Related Vulnerabilities

Figure 14.

DoS Related Analysis.

Acunetix Web Application Vulnerability Report 2019 20

Cross-Site Request Forgery (CSRF)
vulnerabilities allow attackers to trick
victims into making an authenticated
HTTP request to a vulnerable website
or web application from another
origin (often, but not always, from a
website the attacker controls).

By abusing a CSRF vulnerability, an attacker takes advantage

of the trust a website has with a victim’s browser. Whenever a

user sends an HTTP request to a website or web application,

the browser will automatically send with it any cookies

associated with that website’s origin (the domain from which

the the HTTP request originates). As a result, if an attacker

convinces a victim to visit a page that sends an HTTP request,

the browser will automatically, and crucially – without user

intervention – include a valid cookie as part of the request,

provided one was set. Cookies contain authentication tokens

to enable users to log in, so, if a victim is logged into a

vulnerable website, the HTTP request would be made in the

context of the logged in user.

CSRF attacks are potentially dangerous because they leverage

the identity and privileges of the victim as part of the forged

request (assuming the victim is logged in).

Analysis

Fifty-one percent of sampled targets were found to be

susceptible to Cross-site Request Forgery, or have an HTML

form without the presence of a CSRF token.

While it is possible to detect CSRF automatically, it is not

possible to automatically determine its real-world impact. The

reason for this is because not every HTML form necessarily

has sensitive actions associated with it (for example, a search

query).

Cross-site Request Forgery

Figure 15.

CSRF Analysis.

Acunetix Web Application Vulnerability Report 2019 21

https://www.acunetix.com/websitesecurity/csrf-attacks/

Host header injection is an attack that occurs due to the

implicit trust of web applications in the HTTP host header.

Web application developers or technical operations engineers

may trust the value of the HTTP host header within their

applications, web servers, or load balancer configurations.

However, this trust in the HTTP host header is misplaced,

since an attacker has control over this header when crafting a

malicious HTTP request.

Some applications implicitly trust the value inside the HTTP

host header and use it for everything from generating links

to importing scripts and stylesheets on a page. Application

developers can even rely on the value of the HTTP host

header to generate password reset links.

Under the right circumstances, an attacker can use control

of the HTTP host header to cause web cache poisoning. This

tactic allows an attacker to temporarily ‘poison’ a web cache,

resulting in that cache serving victims whatever malicious

content the attacker wants. Where the HTTP host header is

used to reset password links, an attacker can send a reset

password

link to a different email address instead of the one to which

the email was intended. This results in an attacker possessing

the ability to take over an account entirely (especially if no

two-factor authentication is in place).

Analysis

Four percent of sampled targets were found to be vulnerable

to Host Header Injection. While Host Header Injection does

bear a significant risk, it isn’t the most straightforward to

exploit. It requires unlikely conditions to be met for an

attacker to successfully take advantage of it. Host Header

Injection like XSS and SQLi is another case of placing implicit

trust in user-controlled input, which could be easily avoided.

Host Header Injection

Directory Listing is a web server “feature” which could

result in a web server divulging sensitive information to an

attacker, if it is not disabled. Directory Listing is enabled by

default in web servers like Apache HTTP Server. This allows

a user to view a list of files and directories hosted on the

web server in an organized, hierarchical way. An attacker

can abuse this feature by navigating towards a directory

without an index file. If the directory listing is enabled, the

web server will provide the attacker with a list of files and

directories.

Directory Listing may allow an attacker to escalate an attack

by disclosing sensitive information or even configurations.

For instance, an attacker may leverage Directory Listing to

download source code configuration files, as well as private

information.

Analysis

Nine percent of sampled Targets were found to be

vulnerable to Directory Listing misconfigurations. While this

result is not surprising, given that directory listing is enabled

by default on Apache HTTP Server, system administrators

should follow basic hardening guides when deploying

services with which they may not be fully familiar.

Directory Listing

DIRECTORY
LISTING

9%
[795]

Figure 17.

Directory Listing Analysis.

HOST HEADER
INJECTION

4%
[396]

Figure 16.

Host Header Injection Analysis.

Acunetix Web Application Vulnerability Report 2019 22

https://www.acunetix.com/blog/articles/directory-listing-information-disclosure/

Transport Layer Security (TLS) and
its predecessor, Secure Socket
Layer (SSL), are used every day to
authenticate, encrypt and verify the
integrity of data between a client
and a server.

TLS is of monumental importance to every website on

the Internet, and even more so to websites that deal

with sending and receiving sensitive data, such as login

information, personal information and credit cards. TLS

is used to ensure that no third-parties can access or

alter these communications while data is in transit. TLS

misconfigurations, or using old or broken TLS ciphers that

allow downgrade attacks, is an issue that may impact the

privacy, as well as the integrity, of data passing over a public

network, such as the Internet.

Analysis

Seventeen percent of sampled targets were found to have

TLS/SSL issues. Hyped TLS vulnerabilities like Heartbleed

(0%) and POODLE (3%), which were very much widespread

when they were initially discovered, have now decreased

significantly, with Heartbleed almost entirely absent.

DROWN, which is a TLS downgrade attack, affects 1% of

Targets, while BREACH, which is TLS a vulnerability allowing

the extraction of repeated secret tokens, affects 6% of

sampled targets.

TLS/SSL Vulnerabilities

DROWN

1%[57]

HEARTBLEED

0%[2]

POODLE

3%[306]

BREACH

6%[595]

Figure 18.

TLS/SSL Vulnerabilities Analysis.

Acunetix Web Application Vulnerability Report 2019 23

https://www.acunetix.com/blog/articles/tls-ssl-cipher-hardening/
https://www.acunetix.com/blog/articles/poodle-gives-final-bite-puts-sslv3-rest/

It is estimated that over 30% of all
websites on the Internet are based
on WordPress.

With such a massive number of installations deployed

around the world, the popularity of Wordpress makes it a

prime target for attackers. While WordPress does expose

some inherent security weaknesses, such as username

enumeration and XML-RPC authentication bruteforcing,

the WordPress community works hard to make WordPress

secure by default.

Thanks to the strong community behind WordPress, any

security vulnerabilities that affect the WordPress core are

easy to fix. Users just need to make sure they’re running

the latest version of WordPress, in which security updates

are now turned on automatically, making this a zero effort

endeavor. Unfortunately for the estimated 32% of sites on

the Internet running out of date versions of WordPress,

upgrading may involve more effort due to incompatible old

plugins and themes.

These positive points about WordPress’ core security

efforts cannot be applied to its plugin and theme

ecosystem. Plugins and themes provide WordPress site

authors a way to extend WordPress’ core functionality.

As an open system, it’s possible for anyone to write a

plugin and distribute that plugin via the WordPress plugin

repository. Consequentially, it is very common for popular

plugins to contain critical vulnerabilities that make their

way onto thousands of WordPress installations.

Vulnerabilities within popular plugins can range from

information disclosure to Cross-site Scripting, all the

way to the most perilous of vulnerabilities, such as SQL

injection and Remote Code Execution. Once an attacker

finds a vulnerability in a popular WordPress plugin, their

tendency is to exploit the vulnerability across thousands of

WordPress sites across the Internet.

Analysis

Thirty percent of sampled targets were found to be

vulnerable to one or more WordPress vulnerabilities. The

impact of a vulnerable WordPress core installation or that of

a vulnerable WordPress plugin will vary, based on the kind

of vulnerability in question. This may range from Cross-

site Scripting to SQL injection, all the way to Remote Code

Execution.

WordPress Vulnerabilities

Figure 19.

Wordpress Analysis.

Acunetix Web Application Vulnerability Report 2019 24

Web server software, like all other software, has sporadic

security issues. Usually, web server vendors are quick to

patch any critical vulnerabilities. Upgrading to the latest

version of the web server’s software is sufficient to resolve

the security issue.

Failure to patch even trivial
vulnerabilities in web server
software can lead to significant
compromise. It depends on the level
of the vulnerability. But by their
nature, web servers are designed to
be public facing and are meant to
deal with all sorts of traffic on the
Internet.

Vulnerabilities in web servers may range anywhere from

information disclosure all the way to a remotely exploitable

buffer overflow vulnerability, which could allow an attacker

to escalate an attack to Remote Code Execution (RCE).

Analysis

Forty-six percent of the sampled targets were found to

have either Web Server Vulnerabilities or Misconfigurations.

Unsurprisingly, the large majority of misconfigurations

in this category were related to version disclosure. It’s

common for various web servers to disclose not only which

web server is serving a request, but also what version. While

this is not strictly classified as a vulnerability, it may provide

an attacker with some useful, albeit limited, information.

In other cases, old versions of web servers were identified

that contained vulnerabilities, mostly related to Denial of

Service or Information disclosure.

Web Server Vulnerabilities & Misconfigurations

IIS

23%[2,097 APACHE

16%[1,439]

NGINX

8%[749]

Figure 20.

Web Server Vulnerabilities Analysis.

Acunetix Web Application Vulnerability Report 2019 25

The analysis of this year’s results
continues to reaffirm that the web
application vector is a major and
significant threat to the security of
organizations of any size, anywhere
in the world, whether they take
security steps or not.

The traditional patching approach to mitigating most

network-layer vulnerabilities just doesn’t work the same

with web application vulnerabilities, such as SQL injection,

Cross-site Scripting, and Remote Code Execution. This is

due to the fact that web application vulnerabilities tend

to occur due to poor design choices made during the

development and deployment phases.

There is overall progress in the number of high severity

vulnerabilities detected. But over 35% of websites and

web applications are susceptible to at least one single

high severity vulnerability. More needs to be done to

keep up with the speed at which these vulnerabilities

are introduced. At Acunetix, we believe that in order for

many organizations and their security teams to have

a fighting chance at keeping up, security needs to be

automated and incorporated as an integral part of the

development process.

Over the past couple of years, Acunetix – through both

Acunetix Online, as well as Acunetix On-Premise – has

worked hard to make web security accessible to as many

stakeholders as possible within an organization. Making

Acunetix accessible through a powerful, easy to use, multi-

user web interface, while at the same time keeping all the

important technical information, controls and insights at

the fingertips of the security practitioners, has been at the

forefront of our Product Team’s mission.

By making Acunetix up to 50% faster, and providing

even more integration options than ever before, it ’s now

easier than ever to embed Acunetix at the heart of your

development and Continuous Integration (CI) processes.

You no longer have to waste time weeding through an

endless stream of false positives, or waiting an excessive

amount of time for a scan to finish.

Web application vulnerabilities pose an increasingly

serious threat to the security posture of organizations as

a whole. Now is the best time to take a serious look at how

automation can help make your application security more

holistic and agile.

Conclusion

Acunetix Web Application Vulnerability Report 2019 26

WHERE TO FIND US

Stay up to date with the latest web security
news.

Website. www.acunetix.com

Acunetix Web Security Blog.
www.acunetix.com/blog

Facebook. www.facebook.com/acunetix

Twitter. twitter.com/acunetix

CONTACT INFORMATION

Acunetix (Europe and ROW)
Tel. +44 (0) 330 202 0190
Fax. +44 (0) 30 202 0191
Email. sales@acunetix.com

Acunetix (USA)
Tel. (+1) 737 241 8773
Fax. (+1) 737 600 8810
Email. salesusa@acunetix.com

With an easy to use user interface, dead-accurate scan

results, and unparalleled technology support, Acunetix

Online makes scanning for web application vulnerabilities

easy and painless, whether you manage a handful or

hundreds of websites.

With support for the latest and best technologies,

including HTML5 and JavaScript, Acunetix Online detects

a wide range of dangerous vulnerabilities, including SQL

Injection, Cross-site Scripting, and Local File Inclusion.

It does all of this while lowering false positives to an

industry-wide minimum, and keeping a relentless focus on

scan speed without sacrificing accuracy.

With over 3100 web application vulnerability tests,

Acunetix Online provides the widest testing coverage

available, including the detection of out-of-band

vulnerabilities such as Blind Cross-Site Scripting (BXSS),

Server-Side Request Forgery (SSRF), XML External Entity

Injection (XXE), Host Header Injection and more.

Acunetix Online incorporates with the most advanced

detection of WordPress, Drupal, and Joomla!

vulnerabilities, as well as a wide range of reports including

OWASP Top 10, PCI DSS and HIPAA compliance.

Give your application security programme the boost it

deserves. Get a demo of Acunetix today.

www.acunetix.com/web-vulnerability-scanner/demo/

About Acunetix Online

Founded in 2005 to combat the growing web application

security threat, Acunetix is a technology leader and

pioneer in the realm of automated web application

security.

Acunetix is depended on globally and used by individual

pen-testers and security practitioners, all the way to

Fortune 500 and Government organizations such as NASA,

the U.S. Air Force, Disney and Adobe.

About Acunetix

