
[State of  the Internet]
Volume 7, Issue 4

API: The Attack Surface 
That Connects Us All



Table of Contents

Letter from the Editor

Guest Essay  — API Security: The Past Is Repeating Itself

Introduction

API Security

Akamai by the Numbers

Conclusion

Appendix A — Best Practices: API Security

Appendix B — Methodologies

Credits

3

4

6

7

13

18

18

19

21



API: The Attack Surface That Connects Us All: Volume 7, Issue 4                 SOTI 3

Welcome to Akamai’s State of the Internet / Security (SOTI) report, Volume 7, Issue 4. Whether 
you’ve been reading this report from the beginning or are a new reader, we welcome you and 
hope our research provides you with intelligence you don’t see elsewhere.

Did you know the first instance of an application programming interface (API) in the wild was 
created by Salesforce.com on February 7, 2000, according to the API Evangelist blog? What 
was originally meant as a relatively simple system-to-system communication method has 
evolved into one of the biggest drivers of internet traffic.

We reached out to Chris Eng, Chief Research Officer at Veracode, to ask him to discuss the 
growth of APIs and the vulnerabilities they expose organizations to. Chris started in security 
around the time the first API was written, and because of Veracode’s role in the application 
security space, he has a deep understanding of the topic. Unsurprisingly, Chris sees significant 
parallels between the early days of software development and the current state of API traffic.

We believe attacks on APIs are underdetected — and underreported when they are detected — 
making them one of the biggest threats organizations face. DDoS attacks and ransomware are 
both major issues, and they’re both in the news today because their impact is so immediate 
and visible. The attacks on APIs don’t receive the same level of attention, in large part because 
criminals use APIs in ways that lack the splash of a well-executed ransomware attack.

Our drive to evolve the SOTI report has always been one of our key strengths. We want to 
continue to push ourselves to bring to the forefront new research and interesting ideas that 
haven’t been seen before. We plan on using data sources from across a broad spectrum, 
including the intelligence gathered by partners like Veracode. We look forward to learning 
more about what’s really happening in the darkness surrounding APIs and sharing the 
intelligence with you.

Martin McKeay  
Editorial Director

Letter from the Editor

https://apievangelist.com/2012/12/20/history-of-apis/


API: The Attack Surface That Connects Us All: Volume 7, Issue 4                 SOTI 4

GUEST ESSAY

API Security: The Past Is Repeating Itself
Chris Eng 
Chief Research Officer, Veracode

4

The internet itself is remarkably robust and self-
healing in the face of random disruptions, but 
the closer you get to the application layer and 
especially the human layer, the more you wonder, 
how did this thing ever work in the first place?

High-profile cyber attacks have become 
more common and far-reaching, particularly 
ransomware. This shouldn’t bother you though, 
unless you rely on silly things like gasoline, beef, 
air travel, or your data backups.

This report focuses on API security, and if you’ve 
spent any time looking at APIs, you already know 
that security is too often an afterthought. 

The first rule of writing secure software is 
don’t make assumptions about how people 
will interact with the finished product. When I 
started in this industry over two decades ago, as 
a penetration tester, pretty much every website 
was trivially hackable due to bad assumptions, 
e.g., “it’s impossible to change the value of 
a dropdown menu,” “client-side validation 
works,” and my favorite, “nobody would ever 
do that.” Web developers were already so many 
abstraction layers away from the underlying 
technology that most didn’t even understand 
the HTTP protocol — and the same is probably 
true, or even worse, today.

Over time, web applications have slowly 
improved with the emergence of more 
sophisticated testing tools and more robust 
SDLCs, but with APIs we’re seeing the same 
patterns all over again. As an example,  

a list of API-related incidents in 2020 has been 
collected by CloudVector’s Lebin Cheng. While 
not an all-encompassing list, it serves as a direct 
example of the repeated patterns observed in 
the early days of application development  
and testing. 

APIs are often hidden within mobile apps, 
leading to the belief that they are immune to 
manipulation. Developers make the dangerous 
assumption that users will only interact with the 
APIs via the mobile user interface (UI).

Compare the OWASP Top 10 to the OWASP API 
Security Top 10. The latter purports to address the 
“unique vulnerabilities and security risks” of APIs, 
but look closely and you’ll see all of the same 
web vulnerabilities, in a slightly different order, 
described with slightly different words. To add 
more fuel to the fire, API calls are easier and faster 
to automate (by design!) — a double-edged sword 
that benefits developers as well as attackers.

We’re making all the same mistakes with API 
security that we made with web security 20 
years ago.

The security-development API  
(i.e., the people)
Thinking about APIs, which allow software 
components to interface with each other, leads to 
thinking about the interface between security and 
development teams.

API: The Attack Surface That Connects Us All: Volume 7, Issue 4                 SOTI

https://web.archive.org/web/20210127101627/https://www.cloudvector.com/api-data-breaches-in-2020/


API: The Attack Surface That Connects Us All: Volume 7, Issue 4                 SOTI 55

Security and development have never really 
spoken the same language, in part because 
those personas have very different experiences, 
vocabulary, and priorities. However, that strained 
relationship is becoming ever more critical, 
especially with the inevitable push to deliver more 
features, release faster, and do anything under the 
“DevOps” umbrella, so as to embrace the latest 
engineering craze. What needs to change to get 
better aligned?

Let’s sidebar for a moment. In my experience, 
attackers make the best defenders. This is not to 
suggest you recruit your infosec staff from PLA 
Unit 61398 or Lazarus Group. My definition of 
an attacker is someone with an offense-oriented 
mindset and expertise — a “breaker.”

Breakers have a much better grasp on the art 
of the possible. Often a breaker will report a 
vulnerability, and it’ll get patched just enough to 
stymie the proof-of-concept exploit but nothing 
more. Flip one character from lowercase to 
uppercase, or try the same attack on a different 
part of the website, and it works again. Why? 
The defender didn’t do a thorough fix. Why 
not? Because they don’t really know why the 
attack works and how the attacker thinks. It’s not 
as simple as telling them to “just think like an 
attacker” if they haven’t done it before; that’s like 
telling a hairstylist to “think like a plumber” and 
expecting that they magically have the know-how 
to reroute a sewer line.

People who haven’t been breakers also tend 
to mischaracterize risk, usually in the “Chicken 
Little” direction. The exploits are sometimes black 
magic to them, because they’ve never done it 

themselves, so they err on the side of thinking 
everything is a gaping security hole. This is 
ultimately unproductive, because if everything is a 
priority, nothing is a priority. 

On the other hand, pure breakers tend not to 
understand how development processes work. 
They oversimplify the cost and complexity 
associated with code changes, and they often just 
don’t speak the developer’s language. They may 
have never had to build or ship a product, and 
are unable to grasp the complexity of business 
trade-offs. And sometimes they don’t want to — 
breaking into things is a lot more fun.

This is where we are today. Very few security 
professionals can straddle both worlds effectively. 
They’re the proverbial purple squirrels — perfect 
for the job, but pretty hard to find. 

What now?
In product management circles, you’ll sometimes 
hear about the Time to Value (or Time To First 
Value, TTFV), which describes how long it takes 
for a new customer or prospect to first realize 
value from whatever it was that you’ve sold them. 
Naturally, the goal is “as fast as possible.” 

We need to minimize Time to Value for a new 
security practitioner.

Referring to the recent scale and impact of 
breaches, Jeremiah Grossman posited that it’s not 
so much that offensive techniques have improved, 
but rather that adversaries have proven more 
capable than the infosec industry at recruiting and 
training entry-level roles. 

5API: The Attack Surface That Connects Us All: Volume 7, Issue 4                 SOTI

https://twitter.com/jeremiahg/status/1412752712668680192


API: The Attack Surface That Connects Us All: Volume 7, Issue 4                 SOTI 666

The cybersecurity skills gap we hear so much 
about is largely a reluctance (or worse, a systemic 
inability) to train people up. What if we put more 
effort toward on-the-job training? For example, 
learn offense and defense skills simultaneously 
by exploiting that SQL injection vulnerability, 
then writing the code to fix it. And then figure 
out how to circumvent your own fix. Now, repeat 
the exercise on a crusty 10-year-old enterprise 
application that needs to pass all the unit and 
integration tests before the fix can be shipped. 

The other strategy we can take is to recruit 
developers into security! Find an opportunity 
to demonstrate some exploits and look for the 
developers with lightbulbs illuminating over 
their heads. Harness the curiosity and build from 
there. Imagine a security team that is composed 
of seasoned breakers working alongside former 
developers. You get deep experience in both 
worlds, and most importantly, you begin to break 
down silos and work collaboratively instead of 
shouting from the sidelines.

Disclaimer: The views and opinions expressed in this essay are those of the author, and are not 

reflective of the views and opinions of Akamai.

Introduction 

In this edition of the State of the Internet / Security, 

we’re going to talk about the security of application 

programming interfaces (APIs). It’s an important topic 

— Gartner predicted that “by 2022, API abuses will 

move from an infrequent to the most-frequent attack 

vector, resulting in data breaches for enterprise web 

applications.”1 

In addition to our own research, we’ve partnered with 

Veracode for this report, as their insights into the 

application security space helped further our 

research into APIs and development challenges. As 

you’ve seen, Veracode’s Chief Research Officer, Chris 

Eng, authored our guest essay.

Concerning the state of attacks online, we looked at 

18 months of attack traffic between January 2020 

and June 2021. In June 2021, on a single day, 

Akamai observed 113.8 million attacks. That’s more 

than three times the number of attacks that we saw 

during the same time frame in 2020. With 6.2 billion 

attempts on record, SQL Injection (SQLi) remains at 

the top of the web attack trending list, followed by 

Local File Inclusion (LFI) with 3.3 billion, and Cross-

Site Scripting (XSS) with 1.019 billion.

Credential stuffing has been the source of a steady 

stream of attacks so far this year, with both dips and 

peaks in the first two quarters. Akamai observed two 

notable peaks in January and May 2021, when the 

number of credential stuffing attacks surged past 1 

billion. Coincidentally, the two peaks were recorded 

on the second of each month; there is no indication 

as to why criminals were hitting their hardest on this 

particular day of the month.

The United States was the top target for web 

application attacks during this observed period, with 

nearly six times the amount of traffic than the United 

Kingdom, which ranked second. The United States 

was also in the top spot on the source list for attacks, 

taking first place away from Russia, with almost four 

times the amount of traffic.

Finally, DDoS traffic has remained consistent in 2021 

so far, with peaks recorded earlier in Q1 2021. In 

January, Akamai recorded 190 DDoS events in a 

single day, followed by 183 on a single day in March.

https://www.veracode.com/sites/default/files/pdf/resources/sossreports/state-of-software-security-volume-11-veracode-report.pdf
https://www.veracode.com/sites/default/files/pdf/resources/sossreports/state-of-software-security-volume-11-veracode-report.pdf


API: The Attack Surface That Connects Us All: Volume 7, Issue 4                 SOTI 7

API Security

Interfacing with the world
APIs are everywhere. If there is an application or 

service available on the internet, you can be sure it’s 

supported, in some way, by an API. These days, APIs 

power mobile applications, the Internet of Things 

(IoT), cloud-based customer services, internal 

applications, partner applications, and more. 

In addition to security concerns posed by APIs, there 

is also the performance aspect to consider. For 

Akamai’s part, we see the performance 

improvements offered by APIs on a regular basis, as 

API traffic is offloaded from origin servers to edge 

servers on the CDN side of things. This configuration 

speeds up access and ensures availability.

But there’s a growing problem. Organizations that 

defend their APIs with traditional network security 

solutions are having moderate success at best, if they 

have any success at all. This is because the old 

standards of network defense can only do so much. 

For the most part, the same risks that exist for 

websites and web applications will apply to APIs, but 

they need to be addressed separately.

APIs greatly expand the attack surface that 

organizations must be concerned about. That  

means defenders and development shops need  

to work harder to address these problem areas. 

According to Gartner, “by 2021, 90% of web-enabled 

applications will have more surface area for attack in 

the form of exposed APIs rather than the UI, up from 

40% in 2019.”1

The good news is that business leaders and security 

teams are already adopting stronger security 

postures related to API practices. However, there is 

plenty of room to grow, and criminals are certainly 

taking advantage of the API security gaps.

Gartner predicted that “by 2022, API 
abuses will move from an infrequent 
to the most-frequent attack vector, 
resulting in data breaches for 
enterprise web applications.”1



8API: The Attack Surface That Connects Us All: Volume 7, Issue 4                 SOTI 8
 

Defending the code
The Open Web Application Security Project 

(OWASP) is a nonprofit foundation that works to 

improve the security of software. They’re widely 

known for their OWASP Top 10 list, which highlights 

the most critical security risks faced by web 

applications, including injection attacks, broken 

authentication, sensitive data exposure, broken 

access controls, and misconfigurations.

The latest incarnation of the OWASP Top 10, at the 

time this report was written, was released in 2017 

(A1-10:2017). OWASP has also published an API 

Security Top 10 list (API1-10:2019), and the overlap 

between the two is substantial. Over time, the 

security industry has developed a number of ways to 

track software vulnerabilities and map them to best 

practice guides like the OWASP lists — including 

Common Weakness Enumeration (CWE) definitions, 

which are maintained by MITRE.

Considering the number of publicly disclosed 

vulnerabilities and reported attacks, it is clear that 

APIs are facing the same sorts of problems that 

web-based applications have been tackling for years. 

For example, let’s look at hard-coded credentials.

On July 29, 2020, Cisco released a patch for Data 

Center Network Manager (DCNM), after it was 

determined that hard-coded credentials in the REST 

API could allow an unauthenticated remote attacker 

the ability to bypass authentication and execute 

commands with administrative privileges. This 

vulnerability, CWE-798 (hard-coded credentials), can 

be directly linked to both API2:2019 and A2:2017 via 

OWASP, under broken authentication.

APIs are supposed to be versatile, enabling ease of 

use and access for both the business and end user. 

Most organizations use APIs in some fashion, either 

internally or externally, for customers or business 

partners, or a mix. The key function and expectation 

for API development and deployment is integration 

and data access, but there has been tremendous 

growth over the past few years in using APIs for 

digital business lines and services (e.g., Checkr, 

Twilio, Scale, Segment).

This versatility, however, is where things start to go 

off the rails, because sometimes the trade-off 

between ease of use and security is a tricky one  

to manage.

A good example of how hard it is to balance usability 

and security is Twitter’s API security disclosure from 

February 2020. In a public notification, Twitter 

disclosed that a large number of fake accounts were 

exploiting its API and matching usernames to phone 

numbers. The API function was supposed to make it 

easier for users to find friends, but malicious actors 

exploited this feature for data enrichment. This 

incident can be tracked under CWE-284, and 

A2:2017/API5:2019 via OWASP.

Another example of where the trade-off between 

availability and security can be hard to manage was 

disclosed earlier this year (July 2021) by researcher 

Muhammad Sholikhin. He was able to identify 

members of closed groups on Facebook, using the 

social media giant’s API. A person’s membership to a 

closed group is supposed to be confidential, so 

Facebook patched the flaw and paid the researcher a 

bounty for his work.

GitLab, a popular Git repository manager, had 

problems similar to those experienced by Facebook. 

It was notified via its bug bounty program that 

researcher Riccardo Padovani discovered it was 

possible to view private group projects via the API. 

Ultimately, GitLab paid a bounty for the disclosure 

and patched the issue.

8

https://owasp.org/
https://tools.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-dcnm-bypass-dyEejUMs
https://privacy.twitter.com/en/blog/2020/an-incident-impacting-your-account-identity
https://medium.com/@muhammadsholikhin/facebook-vulnerability-expose-group-member-3000-cca809a53f6b
https://medium.com/@muhammadsholikhin/facebook-vulnerability-expose-group-member-3000-cca809a53f6b
https://hackerone.com/reports/748375


9API: The Attack Surface That Connects Us All: Volume 7, Issue 4                 SOTI

Criminals seeking Twilio access
Criminals pay attention to security recommendations 

and suggested best practices, and look for ways to 

exploit businesses and services that follow these 

suggestions, but have made seemingly minor 

mistakes (albeit with costly repercussions).

One such service is Twilio. Twilio is a hugely 

successful API service that enables developers  

to improve user experience by managing 

communications via SMS, chat, video, and email.

To secure the credentials needed for Twilio to 

function, the service tells developers to store the 

Twilio account security identifier (SID) and 

authentication (auth) token in a way that prevents 

unauthorized access. The company’s documentation 

stresses this protection, and suggests environment 

variables as a means to accomplish it. Variables are a 

logical solution commonly associated with API 

development. However, where these variables are 

stored is important.

Twilio says SID and auth tokens can be stored in .env 

files, but stresses that these files should be added to 

the .gitignore file so the sensitive content isn’t 

uploaded in plain text. Website administrators will 

often encourage that such files be stored outside of 

the main root directory (/www/ or /public_html/) to 

prevent access. But this doesn’t always happen, and 

it can be a costly mistake.

Criminals are actively seeking access to Twilio SID 

and auth tokens, by scanning websites for common 

environmental variable names, such as those that 

end in .env, .dev, or even .prod. Akamai’s honeypots 

have observed scans for “twilio.env” files directly as 

recently as August 25, 2021 (around the time this 

report was being finalized). Moreover, just prior to 

the scans hitting our honeypots, SANS reported 

seeing similar scans for Twilio access.

Those doing all the scanning to expose the SID  

and auth tokens can then take their successful results 

and do passive reconnaissance on the compromised 

accounts to sell them to buyers, such as the person  

in Figure 1.

Compromised Twilio accounts can be used for 

general spamming, passive phishing, targeted 

phishing, and other fraud, so it is important that 

those accounts be protected.

Fig. 1: A threat actor is looking to purchase Twilio access, and is 

particularly interested in accounts with automatic recharge enabled

https://www.twilio.com/docs/usage/secure-credentials
https://www.twilio.com/docs/usage/secure-credentials
https://isc.sans.edu/diary/rss/27782
https://isc.sans.edu/diary/rss/27782


10API: The Attack Surface That Connects Us All: Volume 7, Issue 4                 SOTI

Healthcare
As we said earlier, integration and data access are 

the key expectations for the development and 

deployment of APIs by an organization. Nowhere is 

this line of thinking more evident than in the 

healthcare industry.

In 2020, as the COVID-19 pandemic started to alter 

our lives, the ability to use mobile health (mHealth) 

applications — to manage prescriptions, medical 

records, and even doctor appointments — became 

crucial. In addition, people continued to use health 

trackers as a means of managing their diet  

and exercise. 

In February 2021, Alissa Knight, partner at Knight Ink, 

published a report sponsored by Approov (an API 

security vendor) on mHealth application and API 

security. The results of this six-month investigation 

were astounding.

In exchange for not attributing the findings to any 

single company, Knight was able to openly test 30 

different mHealth applications. Some of the 

organizations involved with Knight’s research had 

well over 1,000 APIs serving their applications. One 

of the challenges with API security is identifying and 

tracking API deployment, and the larger that 

deployment base is, the harder it becomes to  

defend it.

Half of the APIs tested in Knight’s work allowed 

access to pathology, X-rays, and clinical results for 

other patients, as well as access to admission records 

for patients heading into a hospital, which was 

outside the level of authorization granted.

All of the mHealth applications tested had APIs that 

were vulnerable to broken object level authorization 

(BOLA). This enabled Knight to view personally 

identifiable information (PII) and protected 

healthcare information (PHI) for individuals who  

were not assigned to the tested clinician account. 

Furthermore, nearly 80% of the applications tested 

had hard-coded API keys (including some that never 

expire), tokens, private keys, and even hard-coded 

usernames and passwords as part of their design.

“Basic cybersecurity hygiene, such as not hard 

coding usernames and passwords in source code 

and authorizing all requests, is an endemic problem 

in mHealth,” Knight’s report concluded.

“mHealth companies need to implement more of a 

zero-trust approach to the security of their apps and 

APIs, ensuring that just because someone is 

authenticated doesn’t necessarily mean they are 

authorized to access the data.”

In short, the mHealth applications tested by Knight 

were in serious need of a security checkup. Thanks 

to the cooperation between Knight and the 

companies maintaining the applications, that is 

exactly what they got.

Spring Boot
The Java Spring Framework enables organizations to 

develop enterprise-level applications that run on the 

Java Virtual Machine (JVM). Java Spring Boot (Spring 

Boot) makes developing the applications and services 

with Spring Framework faster and easier. By their very 

nature, Spring Boot applications will have an API or 

interact with one.

 

https://twitter.com/alissaknight
https://threatpost.com/mhealth-apps-millions-cyberattacks/163966/
https://threatpost.com/mhealth-apps-millions-cyberattacks/163966/


11API: The Attack Surface That Connects Us All: Volume 7, Issue 4                 SOTI

For this report, Veracode shared information with 

Akamai regarding the security posture of 5,000 

Spring Boot applications over time. The results were 

derived from static and dynamic application security 

testing, as well as manual analysis. Overall, 100% of 

the applications tested had at least one vulnerability. 

While not all vulnerabilities are equal, the point is, 

writing code without vulnerabilities isn’t as easy as it 

sounds. It takes considerable time and resources, as 

well as leadership support for such efforts.

The majority of the Spring Boot applications tested 

(86%) were vulnerable to Carriage Return and Line 

Feed (CRLF) Injection (CWE 117) in logs. There are 

many types of CRLF vulnerabilities, but for this 

instance we mean those in which the software in 

question does not neutralize, or incorrectly 

neutralizes, any output that gets written to logs. In 

cases such as this, an attacker could forge log data, 

or inject malicious content into the logs themselves. 

CRLF flaws can be exploited to carry out other 

attacks, including XSS. In a related note, 42% of the 

Spring Boot applications included in this data set 

were vulnerable to basic XSS (CWE 80). To be clear 

though, when testing, Veracode will also flag XSS 

vulnerabilities under CWE 79, 83, or 86, depending 

on the situation.

There were also various code-related problems, 

including 68% of the tested applications that 

incorrectly released resources before they were 

made available for reuse (CWE 404), and 50% that 

used broken or risky cryptographic algorithms 

(CWE 327).

Hard-coded passwords were an issue as well in 47% 

of the tested Spring Boot applications (CWE 259), as 

was error messaging handling, where 44% of the 

applications included sensitive information in error 

messages (CWE 209). Some of the Spring Boot 

applications (41%) allowed user input to control or 

influence paths used in file system operations (CWE 

73), providing a level of control over the application 

that wasn’t necessarily intended. Finally, 31% of the 

tested applications were vulnerable to XML External 

Entities (XXE) flaws. XXE flaws can be used to extract 

data, execute remote requests from another server, 

or trigger denial-of-service attacks.

Outside of the top 10 problems identified in the 

Spring Boot applications, 21% were vulnerable to 

CWE 89, or SQLi (Veracode will also flag SQLi under 

CWE 564 and 943). The same percentage also 

contained flaws falling under CWE 601, which 

addresses open redirect vulnerabilities.

If you’d like to map CWEs to the OWASP Top 10, there  

is a mapping graph available on the CWE website.

The following mappings are related to the Spring Boot 

findings by Veracode:

CWE 73:  
A5:2017 via OWASP

CWE 80:  
A7:2017 via OWASP

CWE 89:  
API8:2019 and A1:2017 via OWASP

CWE 117:  
API8:2019 and A1:2017 via OWASP

CWE 209:  
API7:2019 / A6:2017 via OWASP

CWE 259:  
API2:2019 and A2:2017 via OWASP

CWE 327:  
A3:2017 via OWASP

Mapping CWEs to OWASP

https://cwe.mitre.org/data/definitions/1026.html


12API: The Attack Surface That Connects Us All: Volume 7, Issue 4                 SOTI

 

Why application and API 
vulnerabilities exist
Considering the mHealth and the Spring Boot data, as 

well as the other examples previously mentioned, it’s 

understandable to question how APIs are having the 

same problems that web applications did in the past. 

As it turns out, some of those apps have knowingly 

been left vulnerable. The Enterprise Strategy Group 

(ESG) conducted a survey on behalf of Veracode last 

year, which revealed that organizations are knowingly 

pushing vulnerable code.

Specifically, 48% of the organizations that participated 

in the survey admitted to pushing vulnerable code 

regularly. Among that group, 54% said the vulnerable 

code is pushed out in order to “meet a critical deadline” 

with a plan to remediate the known flaws in a later 

release. The call to deploy is often made by a team 

(development manager/security analyst — 28%), an 

individual development manager (24%), a security 

analyst (21%), or individual developers who assess the 

priority of each issue discovered (15%).

The other listed reasons for pushing vulnerable code 

included a feeling that the vulnerabilities were low 

risk (49%) and that the vulnerabilities were discovered 

too late in the development cycle to resolve them 

before the deadline (45%).

Each reason listed is a classic example of a security 

trade-off. The risk of exploitation was accepted to 

meet the needs of the business. It might not sound 

pretty, or even clean, but it’s reality.

Security is hard enough as it is, but development 

security is a complex layer of choices that usually 

revolves around supporting the business first. If a 

business needs to go to market with a product, and a 

code library that was used in development is 

discovered to be vulnerable just as the product is set 

to go live, for many business leaders it is a reasonable 

request to launch now and work on a patch as soon 

as possible — provided that the vulnerability isn’t  

a critical one that exposes the business or  

its customers/users.

Low-risk vulnerabilities, such as those that require a 

complex series of steps, a certain level of access, or a 

specific set of circumstances to exploit, could be 

deprioritized so that the product can hit release 

schedules. It’s a risk decision that businesses all over 

the world deal with on a daily basis. 

Push first, patch second doesn’t mean security is 

ignored completely. It’s just triaged in a way that 

prevents it from interfering with the business or the 

user experience. This is why it is important for security 

to be part of the development cycle.

Collectively, a majority of the respondents to the 

ESG survey (78%) said that security analysts were 

directly engaged with their developers. This 

engagement happens by working with developers 

to review features and code (31%), doing threat 

modeling (28%), or participating in daily 

development meetings (19%).

Another element of the security problems found in 

APIs and application development is the dependency 

on open-source code. ESG’s report states that while 

modern codebases are heavily dependent on 

open-source code, fewer than half of those surveyed 

(48%) said they were leveraging tools to monitor the 

health of those open-source projects.

Finally, the developers themselves, who are driven to 

produce code on a deadline and follow a push first, 

patch second mentality, are lacking in training. ESG 

reported that 29% of those surveyed stated that 

developers lack the knowledge needed to mitigate 

the flaws that were identified in their code. In fact, 

53% of the respondents stated that training is only 

ever done when a new developer joins the team, as 

part of an annual training program, or that their 

developers are expected to educate themselves.

https://www.darkreading.com/application-security/why-vulnerable-code-is-shipped-knowingly
https://www.darkreading.com/application-security/why-vulnerable-code-is-shipped-knowingly


13API: The Attack Surface That Connects Us All: Volume 7, Issue 4                 SOTI

A
tt

ac
ks

 (M
ill

io
ns

)

Daily Attacks 7-Day Average

Sep 28, 2020
53,635,511

Mar 11, 2021
71,670,235

Jun 23, 2021
113,875,654

Jan 01
20

Feb 01 
20

Mar 01 
20

Apr 01 
20

May 01 
20

Jun 01 
20

Jul 01 
20

Aug 01 
20

Sep 01 
20

Oct 01 
20

Nov 01 
20

Dec 01 
20

Jan 01 
21

Feb 01 
21

Mar 01 
21

Apr 01 
21

May 01 
21

Jun 01 
21

Jul 01 
21

0 M

40 M

80 M

120 M

Akamai by the Numbers

As mentioned, the attack statistics in this report  

covers 18 months, from January 2020 until June 2021.

Web attacks
Akamai observed 113.8 million attacks on a single 

day in June 2021, which is more than three times the 

number of attacks observed in June 2020 (Figure 2).

SQLi stands out, in Figure 3, as the number one  

attack profile over the past 18 months, with 6.2 billion 

attempts recorded. Coming in a somewhat distant 

second is LFI with 3.3 billion attacks, and finally XSS 

with more than 1 billion attacks.

Given the fact that a majority of traffic online these 

days is API-based, the web attacks observed by 

Akamai are almost certainly targeting organizations 

with public-facing applications and services.

In fact, when Akamai looked at the data shared by 

Veracode, many of the Spring Boot applications 

tested were vulnerable to SQLi and XSS. There is 

tremendous overlap with the attacks targeting web 

applications and APIs, and as our guest essay pointed 

out, the problems of old are starting to reappear in 

today’s development lifecycles.

Fig. 2: Web attacks spiked in June 2021, with a peak of 113.8 million attacks in a single day

Daily Web Application Attacks
January 1, 2020 — June 30, 2021



14API: The Attack Surface That Connects Us All: Volume 7, Issue 4                 SOTI

55.88%

29.84%

9.17%

2.14% 1.08% 1.89%
0 B

2 B

4 B

6 B

8 B

SQLi LFI XSS PHPi RFI Other

Attack Vector

A
tt

ac
ks

 (B
ill

io
ns

)

Credential abuse
Over the past 18 months, credential stuffing attacks 

have remained steady, with dips and peaks in the 

first two quarters, followed by two notable attacks in 

January and May 2021. On those dates, credential 

stuffing attack traffic surged past 1 billion attacks for 

the day (Figure 5).

The main cause of these attack spikes is unknown, 

but it’s possible they are related to a number of 

credential services that appeared on several markets 

in 2020 and continue to operate to this day. One of 

those services, which started offering access in 

February 2020, promises to deliver constant updates 

and serviceable dehashed credentials in a user:pass 

format, which is exactly what criminals look for when 

buying or trading combination lists.

To be fair, some of these services are scams, but 

those operations don’t last long, as marketplaces 

tend to self-regulate against scammers. The seller 

referenced in Figure 4 was selling access to more 

than 200 GB worth of credentials at the time of the 

initial offering. The service offers buyers a mix of 

basic or more targeted combinations, including 

user:pass records focusing on retail, gaming, crypto 

markets, countries, etc.

Moreover, this individual updates their collection on 

a somewhat regular basis. For example, based on 

their posts, it was claimed that more than 430 million 

combinations were added between February and 

April, and 144 million in May 2021.

Fig. 3: SQLi remains the top web attack vector, as criminals look to exploit applications and APIs for access 

to sensitive or protected information

Top Web Attack Vectors
January 1, 2020 — June 30, 2021



15API: The Attack Surface That Connects Us All: Volume 7, Issue 4                 SOTI

Fig. 4: One service on a popular forum offers a steady stream of credentials that can be used in 

credential stuffing attacks

 

M
al

ic
io

us
 L

o
g

in
 A

tt
em

p
ts

 (B
ill

io
ns

)

0.00 B

0.25 B

0.50 B

0.75 B

1.00 B

1.25 B

Jan 01
20

Feb 01 
20

Mar 01 
20

Apr 01 
20

May 01 
20

Jun 01 
20

Jul 01 
20

Aug 01 
20

Sep 01 
20

Oct 01 
20

Nov 01 
20

Dec 01 
20

Jan 01 
21

Feb 01 
21

Mar 01 
21

Apr 01 
21

May 01 
21

Jun 01 
21

Jul 01 
21

Total Logins 7-Day Average

Jan 02, 2021
1,016,035,177

May 02, 2021
1,039,724,398

Fig. 5: Credential stuffing attacks remained steady over the past 18 months, but two days in Q1 and Q2 

2021 hit peaks of over 1 billion daily attacks

Daily Credential Abuse Attempts
January 1, 2020 — June 30, 2021



16API: The Attack Surface That Connects Us All: Volume 7, Issue 4                 SOTI

It could just be a coincidence, but the two peaks in 

our data set were recorded on the second of each 

month (January and May 2021), respectively. There is 

no indication as to why criminals were hitting their 

hardest on the second, compared to any other day 

during those months.

Targets and Sources
The United States claims the top spot as a target for 

web application attacks during the recorded period, 

taking on nearly six times the amount of attack traffic  

in the United Kingdom, which ranked second  

(Figure 6). The list is rounded out by India, Austria, and 

Canada. Given the fact that the United States is home 

to most of the major targets on the internet, their place 

as the top target doesn’t come as a shock to us.

The United States also claims the top spot on the 

source list for attacks, taking first place away from 

Russia, with almost four times the amount of  

traffic (Figure 7).

Top Target Areas for Web Application Attacks
January 1, 2020 — June 30, 2021

Top Source Areas for Web Application Attacks
January 1, 2020 — June 30, 2021

Fig. 6: The United States was once again the top target for web attacks, followed by the United Kingdom

Fig. 7: The United States was the top source for attack traffic, with nearly four times the traffic coming 

out of Russia

TARGET AREA ATTACK TOTAL GLOBAL RANK

United States 5,998,188,041 1

United Kingdom 1,021,638,223 2

India 825,061,439 3

Austria 309,373,274 4

Canada 282,846,738 5

SOURCE AREA ATTACK TOTAL GLOBAL RANK

United States 4,019,434,857 1

Russia 1,146,258,871 2

India 910,264,770 3

Netherlands 642,859,781 4

Germany 640,368,111 5



17API: The Attack Surface That Connects Us All: Volume 7, Issue 4                 SOTI

The attack source is an interesting metric to follow, 

since Akamai can only see the final hop in the attack 

chain — where the attacker finally makes a 

connection to the target. While the United States is 

on top, that doesn’t mean the attack originated from 

there. In reality, criminals will relay attack traffic from 

a number of sources, with a goal of hiding their 

identity and location.

DDoS
DDoS traffic has remained consistent, with peaks 

recorded earlier in Q1 2021. In January, Akamai 

recorded 190 DDoS events in a single day, followed 

by 183 in March. We expect as the year moves on, 

we’ll see additional spikes, as criminals tend to favor 

DDoS alongside other attacks.

100

125

150

175

200

D
D

o
S 

A
tt

ac
k 

Ev
en

ts

Weekly Total 7-Day Average

Aug 03, 2020
189

Jan 01 
20

 Feb 01 
20

 Mar 01 
20

 Apr 01 
20

 May 01 
20

 Jun 01 
20

 Jul 01 
20
 Aug 01 

20
 Sep 01 

20
 Oct 01 

20
 Nov 01 

20
 Dec 01 

20
 Jan 01 

21
Feb 01 

21
Mar 01 

21
Apr 01 

21
May 01 

21
Jun 01 

21
Jul 01 

21

Jan 18, 2021
190

Mar 29, 2021
183

Fig. 8: DDoS attacks remained consistent over the 18 months observed, with spikes in Q1 2021

Weekly DDoS Attack Events
January 1, 2020 — June 30, 2021



18API: The Attack Surface That Connects Us All: Volume 7, Issue 4                 SOTI

Conclusion

Application security, either on the API side or the 

web application development side, is a complex 

mash-up of features, functions, and business 

demand. Finding balance within this realm isn’t as 

easy as one would think. 

As our data shows, the attackers are clearly out 

there lurking, developing new techniques and 

attack methods — and API functionality is one of 

their primary targets. While teams are moving 

toward having security baked into the development 

lifecycle, the process is slow. This leaves 

organizations behind the eight ball and forces them 

in some cases to launch known vulnerable code 

into the wild, because the business use for said 

code is critical.

In addition to some recommended practices in 

Appendix A, it’s clear that more continuous training 

is needed for app development and API 

implementation, and only then can development 

teams deliver on the expectation of security.

Appendix A — Best 
Practices: API Security

For this report, we spoke to a number of experts, 

and considered several sources for information 

related to API and application security, including 

Veracode, OWASP, MITRE, and 42Crunch.

1. Discover your APIs and track them as you would 

inventory. Many organizations have experienced an 

incident involving an API that they were not even 

aware existed. So knowing where the APIs are, and 

what they’re used for, is essential. Also related to 

this are the external APIs that the organization 

consumes. Those too will need to be identified and 

secured, or at the very least registered as possible 

risk items and assessed.

2. Once you know where all your APIs live, test them 

and understand what vulnerabilities exist within 

them. This will require testing tools and solid 

developer education, as well as partnership with 

existing security teams. 

There will need to be a discussion about risk 

tolerance and plans developed to fix the 

vulnerabilities sooner rather than later. Start off  

by looking for hard-coded keys, logic calls, and 

whether API traffic could be compromised by an 

impersonation attack. It’s also a good idea to scan 

storage and repositories for keys that could be used 

to compromise the API or anything associated with it.

3. Leverage existing WAF infrastructure, as well as 

any identity management and data protection 

solutions, alongside any specialized API security 

tools, both during development and launch. In 

addition, ensure that API security is a continuous 

thing and not a one-off checkbox during 

development. New vulnerabilities and attacks are 

discovered all the time, and single-instance checks 

will leave the attack surface exposed.

4. When it comes to API policies, try to avoid the 

use of unique policies per API, instead favoring a 

blanket set of policies that can be reused. Moreover, 

don’t code policy directly into the APIs that need 

protection. Doing so violates separation of duty 

mechanics, adds unnecessary complexity, adds 

additional overhead burdens for those who 

maintain the code, and denies visibility to security 

teams. A good rule of thumb is making the default 

access level to any resource null, or denied. This 

enforces least privilege, and makes authentication  

a constant requirement. 



19API: The Attack Surface That Connects Us All: Volume 7, Issue 4                 SOTI

5. API development needs to — on some levels — 

include various stakeholders. This includes 

development teams, network and security operation 

teams, identity teams (if they fall outside of the 

operation teams), risk managers, security architects, 

and legal/compliance teams (to ensure the product 

follows all governance and regulatory laws).

When it comes to API security at the OWASP level, 

APISecurity.io is hosting a cheat sheet developed 

by 42Crunch, which is well worth reading.

The entire OWASP Top 10 for applications is 

available on the OWASP website. Each item offers 

tips and tricks for defenders.

Appendix B — 
Methodologies

Web application attacks
This data describes application-layer alerts 

generated by Kona Site Defender and Web 

Application Protector. The products trigger these 

alerts when they detect a malicious payload within  

a request to a protected website or application.  

The alerts do not indicate a successful compromise. 

While these products allow a high level of 

customization, we collected the data presented 

here in a manner that does not consider custom 

configurations of the protected properties.

The data was drawn from Cloud Security 

Intelligence (CSI), an internal tool for storage and 

analysis of security events detected on the Akamai 

Intelligent Edge Platform. This is a network of over 

300,000 servers in more than 4,000 locations on 

more than 1,400 networks in 135 countries. Our 

security teams use this data, measured in petabytes 

per month, to research attacks, flag malicious 

behavior, and feed additional intelligence into 

Akamai’s solutions.

Credential abuse
Credential abuse attempts were identified as 

unsuccessful login attempts for accounts using an 

email address as a username. We use two 

algorithms to distinguish between abuse attempts 

and real users who can’t type. The first is a simple 

volumetric rule that counts the number of login 

errors to a specific address. This differs from what a 

single organization might be able to detect 

because Akamai is correlating data across 

hundreds of organizations.

The second algorithm uses data from our bot 

detection services to identify credential abuse from 

known botnets and tools. A well-configured botnet 

can avoid volumetric detection by distributing its 

traffic among many targets, using a large number of 

systems in its scan, or spreading out the traffic over 

time, just to name a few evasion examples.

This data was also drawn from the CSI repository. 

One customer with significant attack volume was 

removed from this data set prior to 2020, due to not 

having a full year of data. 

It is important to note the credential abuse  

(CRAB) data collection was interrupted from May 

19 through June 7, 2021, and as a result no data 

was collected during this time. To continue utilizing 

the CRAB data set, the number of daily total 

malicious login attempts was imputed using a 

simple median calculation. 

https://apisecurity.io/encyclopedia/content/owasp-api-security-top-10-cheat-sheet-us-letter.pdf
https://owasp.org/www-project-top-ten/


20API: The Attack Surface That Connects Us All: Volume 7, Issue 4                 SOTI

The median daily total malicious login attempts  

for Q2 was calculated with the existing data and 

imputed as the number of daily total malicious  

login attempts for each day missing data in this  

time frame. This method, as well as many others, 

was tested against the full Q1 2021 data set, and 

the simple median calculation was determined  

to be the closest estimate to the known total  

value. No data relating to accounts (i.e., vertical, 

subvertical, target country, source country, regions) 

was imputed, and therefore no calculations 

concerning that information will be available  

for Q2 2021. 

DDoS
Prolexic Routed defends organizations against 

DDoS attacks by redirecting network traffic through 

Akamai scrubbing centers, and only allowing the 

clean traffic forward. Experts in the Akamai security 

operations center (SOC) tailor proactive mitigation 

controls to detect and stop attacks instantly, and 

conduct live analysis of the remaining traffic to 

determine further mitigation as needed.

DDoS attack events are detected either by the SOC 

or the targeted organization itself, depending on 

the chosen deployment model — always-on or 

on-demand — but the SOC records data for all 

attacks mitigated. Similar to web application traffic, 

the source is determined by the source of the IP 

traffic prior to Akamai’s network.



21API: The Attack Surface That Connects Us All: Volume 7, Issue 4                 SOTI

Akamai secures and delivers digital experiences for the world’s largest companies. Akamai’s intelligent edge platform 
surrounds everything, from the enterprise to the cloud, so customers and their businesses can be fast, smart, and secure.  
Top brands globally rely on Akamai to help them realize competitive advantage through agile solutions that extend the power 
of their multi-cloud architectures. Akamai keeps decisions, apps, and experiences closer to users than anyone — and attacks 
and threats far away. Akamai’s portfolio of edge security, web and mobile performance, enterprise access, and video delivery 
solutions is supported by unmatched customer service, analytics, and 24/7/365 monitoring. To learn why the world’s top brands 
trust Akamai, visit www.akamai.com, blogs.akamai.com, or @Akamai on Twitter. You can find our global contact information  
at www.akamai.com/locations. Published 10/21.

21

Credits
Editorial Staff

Guest Author: Chris Eng 

Chief Research Officer, Veracode

Martin McKeay  

Editorial Director

Amanda Goedde  

Senior Technical Writer, Managing Editor

Steve Ragan  

Senior Technical Writer, Editor

Chelsea Tuttle 

Senior Data Scientist

Within this report, Akamai cited Gartner analysis and research data. The information attributed to Gartner came from the  
following report:

1) Gartner ID: G00404900, 01-March-2021 API Security: What You Need to Do to Protect Your APIs

Marketing
Georgina Morales Hampe 

Project Management

Shivangi Sahu  

Program Management

More State of the Internet / Security
Read back issues and watch for upcoming releases of Akamai’s acclaimed State of the Internet / 

Security reports. akamai.com/soti

More Akamai Threat Research
Stay updated with the latest threat intelligence analyses, security reports, and cybersecurity research.   

akamai.com/our-thinking/threat-research

Access Data from This Report
View high-quality versions of the graphs and charts referenced in this report. These images are free 

to use and reference, provided Akamai is duly credited as a source and the Akamai logo is retained.   

akamai.com/sotidata

https://www.akamai.com
https://blogs.akamai.com
https://www.twitter.com/akamai
https://www.akamai.com/locations
https://www.akamai.com/soti
https://www.akamai.com/our-thinking/threat-research
https://akamai.com/sotidata



