

NISTIR 8011
Volume 4

Automation Support for Security
Control Assessments:

Software Vulnerability Management

Kelley Dempsey
Paul Eavy

George Moore
Eduardo Takamura

This publication is available free of charge from:
https://doi.org/10.6028/NIST.IR.8011-4

NISTIR 8011
Volume 4

Automation Support for Security
Control Assessments:

Software Vulnerability Management

Kelley Dempsey
Eduardo Takamura

Computer Security Division
Information Technology Laboratory

Paul Eavy

Cybersecurity Division
Cybersecurity and Infrastructure Security Agency

Department of Homeland Security

George Moore

This publication is available free of charge from:
https://doi.org/10.6028/NIST.IR.8011-4

April 2020

U.S. Department of Commerce
Wilbur L. Ross, Jr., Secretary

National Institute of Standards and Technology

Walter Copan, NIST Director and Under Secretary of Commerce for Standards and Technology

National Institute of Standards and Technology Interagency or Internal Report 8011 Volume 4
112 pages (April 2020)

This publication is available free of charge from:
https://doi.org/10.6028/NIST.IR.8011-4

Certain commercial entities, equipment, or materials may be identified in this document in order to describe an
experimental procedure or concept adequately. Such identification is not intended to imply recommendation or
endorsement by NIST, nor is it intended to imply that the entities, materials, or equipment are necessarily the best
available for the purpose.

There may be references in this publication to other publications currently under development by NIST in accordance
with its assigned statutory responsibilities. The information in this publication, including concepts and methodologies,
may be used by federal agencies even before the completion of such companion publications. Thus, until each
publication is completed, current requirements, guidelines, and procedures, where they exist, remain operative. For
planning and transition purposes, federal agencies may wish to closely follow the development of these new
publications by NIST.

Organizations are encouraged to review all draft publications during public comment periods and provide feedback to
NIST. Many NIST cybersecurity publications, other than the ones noted above, are available at
https://csrc.nist.gov/publications.

Comments on this publication may be submitted to:
National Institute of Standards and Technology

Attn: Computer Security Division, Information Technology Laboratory
100 Bureau Drive (Mail Stop 8930) Gaithersburg, MD 20899-8930

Email: sec-cert@nist.gov

All comments are subject to release under the Freedom of Information Act (FOIA).

https://csrc.nist.gov/publications
mailto:sec-cert@nist.gov

NISTIR 8011 VOL. 4 AUTOMATION SUPPORT FOR
 SECURITY CONTROL ASSESSMENTS: VUL

ii

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

Reports on Computer Systems Technology

The Information Technology Laboratory (ITL) at the National Institute of Standards and
Technology (NIST) promotes the U.S. economy and public welfare by providing technical
leadership for the Nation’s measurement and standards infrastructure. ITL develops tests, test
methods, reference data, proof of concept implementations, and technical analyses to advance the
development and productive use of information technology. ITL’s responsibilities include the
development of management, administrative, technical, and physical standards and guidelines for
the cost-effective security and privacy of other than national security-related information in federal
information systems.

Abstract

The NISTIR 8011 capability-specific volumes focus on the automation of security control
assessment within each individual information security capability. The capability-specific
volumes add tangible detail to the more general overview given in NISTIR 8011 Volume 1,
providing a template for transition to a detailed, NIST standards-compliant automated
assessment. This document, Volume 4 of NISTIR 8011, addresses automating the assessment of
security controls that support the software vulnerability management security capability to
facilitate the management of risk created by defects present in software on the network. Software
vulnerability management, in the scope of this document, focuses on known defects that have
been discovered in software in use on a system. The Common Weakness Enumeration (CWE)
provides identifiers for weaknesses that result from poor coding practices and have the potential
to result in software vulnerabilities. The Common Vulnerabilities and Exposures (CVEs)
program provides a list of many known vulnerabilities. Together, CVE and CWE are used to
identify software defects and the weaknesses that cause a given defect. Vulnerable software is a
key target that attackers use to initiate an attack internally and to expand control.

Keywords

actual state; assessment; authorization boundary; automation; capability; Common Vulnerability
and Exposure (CVE); Common Weakness Enumeration (CWE); dashboard; defect; desired state
specification; dynamic code analyzer; Information Security Continuous Monitoring (ISCM);
malicious code; malware; mitigation; ongoing assessment; patch management; root cause
analysis; security capability; security control item; security control; software file; Software
Identification (SWID) tag; software injection; software product; software vulnerability; software
weakness; software; static code analyzer

NISTIR 8011 VOL. 4 AUTOMATION SUPPORT FOR
 SECURITY CONTROL ASSESSMENTS: VUL

iii

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

Acknowledgments

The authors—Kelley Dempsey and Eduardo Takamura of the National Institute of Standards and
Technology (NIST), Paul Eavy of the Department of Homeland Security, and Dr. George
Moore—wish to thank their colleagues who reviewed drafts and assisted in the production of this
document, including Nathan Aileo, Ujwala Arikatla, Jim Foti, Ned Goren, John Groenveld, Frank
Husson, Jaime Miller, Susan Pagan, Ron Ross, David Waltermire, Kimberly Watson, Isabel Van
Wyk, Brett Kreider, Nate Lee, Jim Finegan, and Nolda Dooley. The authors also gratefully
acknowledge and appreciate the comments and contributions made by government agencies,
private organizations, and individuals in providing direction and assistance in the development of
this document.

Document Conventions

The terms “shall” and “shall not” indicate requirements to be followed strictly in order to
conform to the publication and from which no deviation is permitted.

The terms “should” and “should not” indicate that among several possibilities one is
recommended as particularly suitable, without mentioning or excluding others, or that a certain
course of action is preferred but not necessarily required, or that (in the negative form) a certain
possibility or course of action is discouraged but not prohibited.

The terms “may” and “need not” indicate a course of action permissible within the limits of the
publication.

The terms “can” and “cannot” indicate a possibility and capability, whether material, physical or
causal.

The security capability designation “VULN” was utilized in previous volumes of NISTIR 8011
in reference to the Software Vulnerability Management security capability. For greater
consistency with industry, academia, and other federal agencies, the more widely used
designation for the Software Vulnerability Management security capability, “VUL,” replaces
VULN herein and in future NISTIR 8011 volumes when referring to the Software Vulnerability
Management security capability.

NISTIR 8011 VOL. 4 AUTOMATION SUPPORT FOR
 SECURITY CONTROL ASSESSMENTS: VUL

iv

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

Patent Disclosure Notice

NOTICE: ITL has requested that holders of patent claims whose use may be required for compliance
with the guidance or requirements of this publication disclose such patent claims to ITL. However,
holders of patents are not obligated to respond to ITL calls for patents and ITL has not undertaken a
patent search in order to identify which, if any, patents may apply to this publication.

As of the date of publication and following call(s) for the identification of patent claims whose use
may be required for compliance with the guidance or requirements of this publication, no such
patent claims have been identified to ITL.

No representation is made or implied by ITL that licenses are not required to avoid patent
infringement in the use of this publication.

NISTIR 8011 VOL. 4 AUTOMATION SUPPORT FOR
 SECURITY CONTROL ASSESSMENTS: VUL

v

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

Executive Summary

The National Institute of Standards and Technology (NIST) and the Department of Homeland
Security (DHS) have collaborated on the development of a process that automates the test
assessment method described in NIST Special Publication (SP) 800-53A for the security controls
catalogued in NIST SP 800-53. This process is consistent with the Risk Management Framework
described in NIST SP 800-37 and the Information Security Continuous Monitoring (ISCM)
guidance in NIST SP 800-137. The multi-volume NIST Interagency Report 8011 (NISTIR 8011)
has been developed to provide information on automation support for ongoing assessments.
NISTIR 8011 describes how ISCM facilitates automated, ongoing assessment to provide near-
real-time security-related information to organizational officials on the security posture of
individual systems and the organization as a whole.

NISTIR 8011, Volume 1 includes a description of ISCM Security Capabilities—groups of
security controls working together to achieve a common purpose. The subsequent NISTIR 8011
volumes are capability-specific. Each volume focuses on one specific ISCM information security
capability in order to (a) add tangible detail to the more general overview given in NISTIR 8011
Volume 1 and (b) provide a template for the transition to detailed, standards-compliant
automated assessments. NISTIR 8011, Volume 4 assumes the reader is familiar with the
concepts and ideas presented in the Overview (NISTIR 8011, Volume 1) as well as concepts and
terms from the NIST Risk Management Framework (RMF) [SP800-37]. Many terms used herein
are defined in NIST SP 800-37 or in the NISTIR 8011 Volume 1 glossary.

This publication, Volume 4 of NISTIR 8011, immediately follows Hardware Asset Management
(HWAM) and Software Asset Management (SWAM) capabilities published as Volumes 2 and 3
respectively. Although it was planned to be released as Volume 5, following Configuration
Settings Management (CSM), the VUL capability is being addressed as Volume 4 in the NISTIR
8011 series due to its close relationship with software. Its objective is to address the management
of risk created by defects present in software on the network. A software vulnerability is caused
by one or more known defects that have been discovered in software, and that can be exploited to
affect an adverse security or privacy outcome.1 Vulnerable software is software in use on a
system that has a software vulnerability but has not yet been patched or otherwise mitigated. The
Common Weakness Enumeration (CWE) provides identifiers for weaknesses that result from
poor design or coding practices and have the potential to result in software vulnerabilities. The
Common Vulnerabilities and Exposures (CVEs) program works with software providers,
vulnerability coordinators, bug bounty programs, and vulnerability researchers to provide a list
of publicly disclosed vulnerabilities. Together, CVE and CWE are used to identify software
defects and the weaknesses that caused a given defect respectively. Vulnerable software is a key
target that attackers use to initiate an attack and to expand control within a system. Patching
vulnerabilities discovered in existing software and improving coding practices for future releases
of software are two ways to limit the success of attacks.

1 Hardware vulnerabilities are often mitigated through software, such as applying a firmware or operating system patch that
controls hardware access or turns off a hardware feature. In NISTIR 8011, software vulnerabilities are inclusive of hardware
vulnerabilities mitigated through software. Hardware vulnerabilities that cannot be mitigated through software require physical
changes to or replacement of hardware, and are outside the scope of NISTIR 8011, Volume 4.

NISTIR 8011 VOL. 4 AUTOMATION SUPPORT FOR
 SECURITY CONTROL ASSESSMENTS: VUL

vi

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

The term vulnerability is used herein to denote software vulnerability as opposed to the more
general use of the term vulnerability. See glossary for the distinction.

Known vulnerabilities are the most likely flaws to be exploited. Risk from known vulnerabilities
is reduced by implementing the software vulnerability management (VUL) capability. The VUL
capability focuses on managing known vulnerabilities and common sources of software flaws
known to produce vulnerabilities.

When known software vulnerabilities are unmanaged, uncorrected, or undetected, software is left
open to exploitation. As a result, vulnerable software is a key target that attackers use to initiate
an attack on an organization’s network and expand control to attack other components on that
network. A well-designed vulnerability management capability helps prevent software with
vulnerabilities from being installed on a network, detect software with vulnerabilities already
installed on a network, and respond to the vulnerabilities detected (e.g., by patching the
vulnerabilities or through other mitigations). Automated assessment of known software
vulnerabilities and weaknesses helps verify that the software vulnerability management
capability is working. When known vulnerabilities are managed, the level of effort needed to
initiate an attack and expand control to other components on the network is increased since the
attacker must identify another method of attack.

Risk from unknown vulnerabilities is reduced primarily by implementing the software asset
management capability (whitelisting) [IR8011-3], and by limiting the use of software to an
organizationally approved list. When software whitelisting is effective, unauthorized software is
blocked, thereby limiting vulnerabilities to only those remaining in the organization’s authorized
software. Additionally, the VUL capability can potentially address unknown vulnerabilities by
scanning for poor coding practices (e.g., CWEs). Scanning for CWEs can make unknown
vulnerabilities known so they can be addressed. Thus, while the primary focus of the VUL
capability is on known vulnerabilities (e.g., CVEs), risk associated with unknown vulnerabilities
is also addressed by the focus on common sources of software flaws (e.g., CWEs).

NISTIR 8011, Volume 4 outlines detailed, step-by-step processes to automate the assessment of
security controls that support vulnerability management implemented for a given assessment
boundary (target network) and to apply the results to the assessment of all authorization
boundaries within that network. A process is also provided to implement the assessment
(diagnosis) and response to a discovered vulnerability. Automated testing related to the controls
for the VUL capability, as outlined herein, is consistent with other NIST guidance.

NISTIR 8011, Volume 4 documents a detailed assessment plan to evaluate the effectiveness of
controls related to vulnerability management. Included are specific tests that form the basis for
such a plan, how the tests apply to specific controls, and the resources needed to operate and use
the assessment to mitigate defects found. For the VUL capability, it can be shown that the
assessment of 87.5 %2 of determination statements for controls in the NIST SP 800-53 Low-

2 Derived from the Control Allocation Tables (CAT) in this volume. With respect to security controls selected in the NIST SP
800-53 [SP800-53] Low-Medium-High baselines that support the VUL capability, 42 of 48 determination statements (87.5 %)
can be fully or partially automated.

NISTIR 8011 VOL. 4 AUTOMATION SUPPORT FOR
 SECURITY CONTROL ASSESSMENTS: VUL

vii

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

Medium-High baselines can be fully or partially automated.

The methods outlined here are designed to provide objective, timely, and complete identification
of defects in the effectiveness of security controls supporting the VUL capability, facilitating risk
management at a lower cost than manual assessment methods. Using security control defect
information can drive the most efficient and effective responses to the security defects found.

NISTIR 8011 VOL. 4 AUTOMATION SUPPORT FOR
 SECURITY CONTROL ASSESSMENTS: VUL

viii

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

Table of Contents
Executive Summary .. v

1 Introduction .. 1

1.1 Purpose and Scope .. 1

1.2 Target Audience.. 1

1.3 Organization of this Volume .. 1

1.4 Interaction with Other Volumes in this NISTIR .. 1

2 Software Vulnerability Management (VUL) Capability Definition, Overview, and
Scope .. 3

2.1 Find Defects/Prioritize Response .. 3

2.2 VUL Attack Scenarios and Desired Result .. 4

2.3 Assessment Objects Managed and Assessed by VUL 6

2.3.1 Common Vulnerabilities and Exposures (CVEs) 7

2.3.2 Common Weakness Enumerations (CWEs) 10

2.3.3 Roles for Mitigation of CVEs and CWEs ... 11

2.4 Example VUL Data Requirements .. 16

2.5 VUL Concept of Operational Implementation .. 17

2.5.1 Collect Actual State .. 19

2.5.2 Collect Desired State .. 21

2.5.3 Find/Prioritize Defects .. 23

2.6 NIST SP 800-53 Controls and Control Items that Support VUL 23

2.6.1 Process for Identifying Needed Controls .. 23

2.6.2 Control Item Nomenclature ... 24

2.7 VUL-specific Roles and Responsibilities ... 24

2.8 VUL Assessment Boundary .. 28

2.9 VUL Actual State and Desired State Specification .. 28

2.10 VUL Authorization Boundary and Inheritance ... 28

2.11 VUL Assessment Criteria Recommended Scores and Risk-Acceptance
Thresholds .. 28

2.12 VUL Assessment Criteria Device Groupings to Consider 29

3 VUL Security Assessment Plan Documentation Template 30

3.1 Introduction and Steps for Adapting This Plan .. 30

3.1.1 Select Defect Checks to Automate ... 30

NISTIR 8011 VOL. 4 AUTOMATION SUPPORT FOR
 SECURITY CONTROL ASSESSMENTS: VUL

ix

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

3.1.2 Adapt Roles to the Organization ... 31

3.1.3 Automate Selected Defect Checks ... 32

3.2 VUL Sub-Capabilities and Defect Check Tables and Template 32

3.2.1 Foundational Sub-Capabilities and Corresponding Defect Checks 33

3.2.2 Foundational Sub-Capabilities and Corresponding Defect Checks 37

3.2.3 Local Sub-Capabilities and Corresponding Defect Checks 46

3.2.4 Security Impact of Each Sub-Capability on an Attack Step Model 49

3.3 VUL Control (Item) Security Assessment Plan Narrative Tables and
Templates ... 51

3.3.1 Outline Followed for Each Control Item .. 52

3.3.2 Outline Organized by Baselines ... 52

3.3.3 Low Baseline Security Control Item Narratives 54

3.3.4 Moderate Baseline Security Control Item Narratives 72

3.3.5 High Baseline Security Control Item Narratives 78

3.4 Control Allocation Tables (CATs) .. 80

3.4.1 Low Baseline Control Allocation Table ... 81

3.4.2 Moderate Baseline Control Allocation Table 82

3.4.3 High Baseline Control Allocation Table .. 82

References .. 83

List of Appendices

Appendix A Traceability of VUL Control Items to Example Attack Steps 86

Appendix B Keyword Rules Used to Identify Controls that Support VUL 87

Appendix C Control Items in the Low-High Baseline that were Selected by the
Keyword Search for Controls that Support VUL, but were Manually
Determined to be False Positives .. 88

Appendix D Control Items Not in the Low, Moderate, or High Baselines 89

Appendix E VUL-Specific Acronyms and Abbreviations ... 91

Appendix F Glossary .. 92

Appendix G Control Items Affecting Desired and/or Actual State from All Defect
Checks in this Volume ... 94

NISTIR 8011 VOL. 4 AUTOMATION SUPPORT FOR
 SECURITY CONTROL ASSESSMENTS: VUL

x

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

List of Figures

Figure 1: VUL Impact on an Attack Step Model .. 4

Figure 2: Organizational Roles in Vulnerability Information Disclosure [SEI] 11

Figure 3: CVE and CWE Mitigation Roles ... 13

Figure 4: VUL Concept of Operations (CONOPS) .. 18

Figure 5: Primary Roles in Automated Assessment of VUL .. 27

Figure 6: Main Steps in Adapting the Plan Template .. 30

Figure 7: Sub-Steps to Select Defect Checks to Automate ... 30

Figure 8: Sub-Steps to Adapt Roles to the Organization ... 31

Figure 9: Sub-Steps to Automate Selected Defect Checks ... 32

List of Tables

Table 1: VUL Impact on an Attack Step Model .. 5

Table 2: Traceability Among Requirement Levels ... 6

Table 3: Example VUL Actual State Data Requirements .. 16

Table 4: Example VUL Desired State Data Requirements .. 17

Table 5: Operational and Managerial Roles for VUL ... 25

Table 6: Mapping of Attack Steps to Security Sub-Capability 49

Table 7: Applicability of Control Items ... 53

Table 8: Low Baseline Control (Item) Allocation Table .. 81

Table 9: Moderate Baseline Control (Item) Allocation Table ... 82

Table 10: High Baseline Control (Item) Allocation Table ... 82

file://elwood/773/users/ekt1/CSRC/NISTIR/Draft/8011%20Vol%204/NIST.IR.8011-4-2020-04-27.docx#_Toc38888058
file://elwood/773/users/ekt1/CSRC/NISTIR/Draft/8011%20Vol%204/NIST.IR.8011-4-2020-04-27.docx#_Toc38888059
file://elwood/773/users/ekt1/CSRC/NISTIR/Draft/8011%20Vol%204/NIST.IR.8011-4-2020-04-27.docx#_Toc38888060
file://elwood/773/users/ekt1/CSRC/NISTIR/Draft/8011%20Vol%204/NIST.IR.8011-4-2020-04-27.docx#_Toc38888061
file://elwood/773/users/ekt1/CSRC/NISTIR/Draft/8011%20Vol%204/NIST.IR.8011-4-2020-04-27.docx#_Toc38888062

NISTIR 8011 VOL. 4 AUTOMATION SUPPORT FOR
 SECURITY CONTROL ASSESSMENTS: VUL

1

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

1 Introduction

1.1 Purpose and Scope

The purpose of the National Institute of Standards and Technology (NIST) Interagency Report
(NISTIR) 8011, Volume 4 is to provide an operational approach for automating the assessment
of NIST SP 800-53 [SP800-53] security controls related to the Information Security Continuous
Monitoring (ISCM) security capability of software vulnerability management (VUL). The VUL
capability is consistent with the principles outlined in NISTIR 8011, Volume 1 [IR8011-1].

The scope of this report is limited to the assessment of security controls/control items that are
implemented for managing software security vulnerabilities and coding weaknesses, also
referred to as flaws, as defined in NIST SP 800-53.

1.2 Target Audience

Because it is focused on the VUL capability, NISTIR 8011, Volume 4 is of special relevance to
those who authorize, download, install, and/or execute software—particularly software patches.
In addition, NISTIR 8011, Volume 4 is relevant to those who design, code, and test software,
and those who wish to understand the risks that software might impose on non-software assets.

1.3 Organization of this Volume

Section 2 provides an overview of the VUL capability to clarify both scope and purpose and
provides links to additional information specific to the VUL capability. Section 3 provides
detailed information on the VUL defect checks and how the defect checks are used to automate
assessment of the effectiveness of NIST SP 800-53 security controls and control items that
support the VUL capability. Section 3 also provides artifacts that can be used by an organization
to produce an automated security control assessment plan for most of the control items
supporting software vulnerability management.

1.4 Interaction with Other Volumes in this NISTIR

Volume 1 of this NISTIR (Overview) provides a conceptual synopsis of using automation to
support security control assessment as well as definitions and background information that
facilitate understanding of the information in this and subsequent volumes.3 NISTIR 8011,
Volume 4 assumes that the reader is familiar with the information in Volume 1 as well as
concepts and terms from the NIST Risk Management Framework [SP800-37].

The VUL capability detects vulnerable software that has been loaded on or is being executed
within the target network, and responds in accordance with organizational policy. Identifying
vulnerable software allows vulnerabilities to be mitigated. The VUL capability depends on the

3 NISTIR 8011 Volume 1 (June 2017) lists the VUL capability to be published as NISTIR 8011, Volume 5. However, it was later
determined that the listed order for publishing NISTIR 8011 capability volumes was not optimal, so the VUL capability is
published as NISTIR 8011, Volume 4. The listed order for publishing NISTIR 8011 capability volumes will be revised in an
errata version of Volume 1.

NISTIR 8011 VOL. 4 AUTOMATION SUPPORT FOR
 SECURITY CONTROL ASSESSMENTS: VUL

2

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

Software Asset Management (SWAM) capability [IR8011-3] to provide an inventory of installed
software. The inventory is then examined to detect the presence of known vulnerabilities and
poor coding practices. Changing configuration settings (the subject of the Configuration Setting
Management (CSM) capability in a future NISTIR 8011 volume) can sometimes be used to
mitigate vulnerabilities by disabling or otherwise protecting vulnerable software features,
especially when patches are not available, thereby supporting software vulnerability
management.

In practice, vulnerability scanning software is often used to find vulnerable software. If the
metadata used to guide software scanning is organized appropriately4, the same digital
fingerprints used for whitelisting [IR8011-3] can be used to accurately and reliably identify
vulnerable code as further discussed in Section 2.5.2.3.

4 Organized appropriately means that it is known which software code files (identified by their digital fingerprint) are vulnerable,
and that software whitelisting is used to determine whether or not files with vulnerabilities are present.

NISTIR 8011 VOL. 4 AUTOMATION SUPPORT FOR
 SECURITY CONTROL ASSESSMENTS: VUL

3

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

2 Software Vulnerability Management (VUL) Capability Definition, Overview,
and Scope

Software vulnerability management recognizes that even authorized software—software that has
been assessed and approved by the organization for execution on a system—can have known
vulnerabilities and (presumably) unknown instances of coding weaknesses that result in
vulnerabilities. Networked devices with coding defects in authorized software are also
exploitable. A key attack vector for external and internal attackers is to exploit software defects,
either for what the software itself can offer or as a platform from which to attack other assets.
Attacks can make use of previously unknown software vulnerabilities (often referred to as zero-
day vulnerabilities), although attacks against known vulnerabilities are more likely to be
attempted. By assigning software with flaws to a person or team for response, the VUL
capability helps reduce the probability that attackers find and exploit software weaknesses and
vulnerabilities.

2.1 Find Defects/Prioritize Response

The VUL capability gives an organization visibility into the vulnerabilities in software
authorized to operate—or being considered for authorization to operate – on its network(s)5.
Visibility into the vulnerabilities allows the organization to manage and defend itself in an
appropriate manner. The VUL capability also provides a view of software management
responsibility that helps prioritize identified defects and facilitate risk response decisions (e.g.,
mitigation or acceptance) by the assigned managers.

The VUL capability identifies software that is present on the network (the actual state) and
compares it with the desired state software inventory to determine if there are less vulnerable
(usually newer) versions of software that can be deployed or if non-patch-related mitigation
strategies are needed.6 The VUL capability is focused on ensuring that all software operating on
the target network poses as little risk from known vulnerabilities as possible, and that an
effective patching and response policy7 is applied.

Note that Volume 3 of NISTIR 8011 defines software to include firmware. The same definition
is used in this volume.

Software (code), as used here, includes a range of assets that might not always be thought of as

5 Specific software products are authorized to operate as components of a system that may or may not be connected to
organizational networks. Conversely, to be effective and efficient, automated assessment of systems and system components
requires network connectivity. Standalone systems/system components do not lend themselves to automated assessment. See
NISTIR 8011 Volume 1 for information on authorization boundaries (systems) versus automated assessment boundaries
(networks).
6 See sections 2.5.1 and 2.5.2 for discussion on actual and desired states.
7 Patching and response policy may be addressed in the organization’s vulnerability management policy.

NISTIR 8011 VOL. 4 AUTOMATION SUPPORT FOR
 SECURITY CONTROL ASSESSMENTS: VUL

4

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

software. Such software assets include:

• Installed software files and products listed in the operating system software database
(e.g., Windows Registry, Linux package manager);

• Software files and products residing on a hard drive but not listed in the operating system
database;

• Mobile code;

• Firmware, if it can be modified (usually includes the BIOS); and

• Code in memory (which could be modified in place).

2.2 VUL Attack Scenarios and Desired Result

NISTIR 8011 uses an attack step model to summarize the six primary steps of cyber-attacks that
NIST SP 800-53 controls work together to block or delay. The VUL security capability is
intended to block or delay attacks only at the attack steps addressed in Figure 1 and Table 1.

Attack Steps VUL Impacts

1) Gain Internal Entry

Block Attempted Compromise:
Stop or delay the compromise of devices
due to software vulnerabilities and
weaknesses

Block Expansion: Stop or delay expansion
or escalation via software vulnerabilities and
weaknesses

2) Initiate Attack

3) Gain Foothold

4) Gain Persistence

5) Expand Control –
Escalate or Propagate

6) Achieve Attack Objective

Figure 1: VUL Impact on an Attack Step Model

Notes on Figure 1
The attack steps shown in Figure 1 apply only to adversarial attacks. (See NISTIR 8011, Volume
1, Section 3.2.)

If the initiated attack succeeds in Step 2, the normal attack progression is that the attacker
immediately gains a foothold on the affected device (via the software) in Step 3. Step 5
(propagation, expansion of control) includes a loop back to Step 2 on a different device from the
one compromised in Step 5.

NISTIR 8011 VOL. 4 AUTOMATION SUPPORT FOR
 SECURITY CONTROL ASSESSMENTS: VUL

5

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

Table 1: VUL Impact on an Attack Step Model

Attack Step Name Attack Step Purpose (General) Capability-Specific Defense

2) Initiate Attack
Internally

The attacker is inside the boundary
and initiates an attack on some
assessment object inside the
boundary.

General examples (not limited to the
VUL capability) include but are not
limited to: user opens spear phishing
email and/or clicks on attachment,
laptop lost or stolen, user installs
unauthorized software and/or
hardware, unauthorized personnel
gain physical access to restricted
facility.

Block Attempted Compromise: Stop or
delay the compromise of devices due to
software vulnerabilities.

Specific examples (for the VUL
capability) include but are not limited to:
unauthorized software, weak setting
configuration, and incomplete patching.

5) Expand Control -
Escalate or Propagate

The attacker has persistence on the
assessment object and seeks to
expand control by escalation of
privileges on the assessment object or
propagation to another assessment
object.

General examples (not limited to the
VUL capability) include but are not
limited to: administrator privileges
hijacked and/or stolen, administrator’s
password used by unauthorized party,
secure configuration is changed
and/or audit function is disabled,
authorized users access resources the
users do not need to perform job,
process or program that runs as root
is compromised and/or hijacked.

Block Expansion: Stop or delay
expansion or escalation via software
vulnerabilities.

Specific examples (for the VUL
capability) include but are not limited to:
unauthorized software, weak setting
configuration, and incomplete patching.

Other examples of traceability among requirement levels. While Table 1 shows software
vulnerability management impacts on example attack steps, it is frequently useful to observe
traceability among other sets of requirements. To examine such traceability, use Table 2 to reveal
traceability from one requirement type to another by looking up the cell in the matching row and
column of interest, and clicking on the link. For example, clicking on the link to Table 6 in the
“Example Attack Steps” column reveals traceability between the Attack Step and the Sub-
Capability/Defect Check ID, Name, and Purpose.

NISTIR 8011 VOL. 4 AUTOMATION SUPPORT FOR
 SECURITY CONTROL ASSESSMENTS: VUL

6

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

Full traceability from controls to attack steps requires the following links in a path:

1. Control-to-control item (provided by control item nomenclature)
2. Control item-to-determination statement (see Section 3.3)
3. Determination statement-to-defect check (aka, sub-capability; see Section 3.3)
4. Defect check (aka, sub-capability)-to-capability (provided by sub-capability

nomenclature)
5. Defect check (and thus capability)-to-attack steps (see Table 6)
6. Capability-to-attack steps (see Figure 1 which is a summary of Table 6)

Table 2: Traceability Among Requirement Levels

 Example Attack
Steps Capability Sub-Capability/

Defect Check Control Items

Example Attack
Steps Figure 1

Table 1 Table 6

Capability
Figure 1
Table 1 Table 6 Section 3.3a

Sub-Capability/
Defect Check Table 6 Table 6 Section 3.3b

Control Items Section 3.3a Section 3.3b

a Each level-four section (e.g., 3.3.1.1) is a control item that supports this capability.
b Refer to the table under the heading Supporting Control Items within each defect check.

2.3 Assessment Objects Managed and Assessed by VUL

The objects managed and assessed by the VUL capability include software flaws and hardware
flaws mitigated through software.8 Two kinds of software flaws are directly managed and
assessed by the VUL capability: (1) Common Vulnerabilities and Exposures (CVEs) [CVE]
identified, analyzed, and proven to exist in specific versions and patch levels of software files in
use on devices; and (2) poor programming practices, called Common Weakness Enumerations
(CWEs) [CWE], revealed in software code of software products and files in use on devices.
Devices are protected when levels of risk arising from CVEs and CWEs contained in the
software running on them are kept within organizational risk tolerances.

The number of software flaws present on a system rises and falls over time. The number
increases as flaws are discovered and decreases as flaws are mitigated. Assessments need to be

8 Hardware vulnerabilities are mitigated through software, such as applying a firmware or operating system patch that controls
hardware access or turns off a hardware feature. In NISTIR 8011, software vulnerabilities are inclusive of hardware
vulnerabilities mitigated through software. Hardware vulnerabilities that cannot be mitigated through software require physical
changes to or replacement of hardware and are outside the scope of NISTIR 8011, Volume 4.

NISTIR 8011 VOL. 4 AUTOMATION SUPPORT FOR
 SECURITY CONTROL ASSESSMENTS: VUL

7

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

periodically repeated to maintain currency of information.

The VUL capability concentrates on protecting from known vulnerabilities for which potential
attackers can easily and cheaply obtain knowledge and tools to guide their exploits. For most
known vulnerabilities, patches exist to repair the vulnerabilities (if a patch does not yet exist, the
vulnerability is considered to be a zero-day vulnerability, since the vulnerability has been
disclosed but no mitigation is available; see Section 2.3.1). Unfortunately, known vulnerabilities
are not always patched in a timely manner, which means that at any point in time some systems
and system components likely have unpatched, exploitable software vulnerabilities.

An effective vulnerability management program—even one that is concentrating only on known
vulnerabilities—is still useful in defending against well-funded, highly motivated, or capable
attackers. Sophisticated attackers spend significant resources to find, weaponize, and conceal
unknown vulnerabilities. They are frugal in deploying the weaponized unknown vulnerabilities,
because the act of using the vulnerability risks revealing the vulnerability (i.e., taking it from
unknown to known) and, once known, could lead to mitigation and neutralization by defenders.
Well-funded and highly capable/motivated attackers, therefore, often prefer to exploit known
vulnerabilities because known vulnerabilities are very cost-effective to attack and using them
does not require spending precious unknown vulnerabilities to achieve the attack objectives. As
such, if software is protected against known vulnerabilities, it raises the cost for even
sophisticated attackers to succeed.

The VUL capability may also potentially address unknown vulnerabilities, for example, by
scanning for poor coding practices (e.g., CWEs). Scanning for CWEs helps make unknown
vulnerabilities known so they can be addressed. Thus, while the primary focus of the VUL
capability is on known vulnerabilities (e.g., CVEs), risk associated with unknown vulnerabilities
is also addressed by the focus on common sources of software flaws (e.g., CWEs).

2.3.1 Common Vulnerabilities and Exposures (CVEs)

The Common Vulnerabilities and Exposures (CVE) Program [CVE] provides a list of entries—
each of which contains a unique identification number, a description, and at least one public
reference—for publicly disclosed cybersecurity vulnerabilities that have been found in specific
software and reported (to https://cve.mitre.org).9 Important characteristics of CVEs for the
purposes of automated assessment are:

• A CVE is a standard way of describing publicly disclosed cybersecurity vulnerabilities
found in software;

• The CVE list is a dictionary with one entry per vulnerability or exposure;

9 At the time of this publication, the CVE Program is in transition and the organizations managing the CVE Program and
associated websites may change.

https://cve.mitre.org/

NISTIR 8011 VOL. 4 AUTOMATION SUPPORT FOR
 SECURITY CONTROL ASSESSMENTS: VUL

8

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

• The unique identifier of a CVE is designed to be interoperable with software systems
across the industry; and

• A CVE is designed to convey the same meaning across products, tools, and services.

Once a vulnerability is disclosed and listed as a CVE, the vendor organization10 maintaining the
software begins work on creating a patch to close the vulnerability. The intent of patching and
alternative methods to fix coding flaws is to discover and mitigate issues before an attacker can
find and exploit them. The challenge for the defender is to stay one step ahead of the attacker
while managing the increasing complexity of the code.

From the time that a vulnerability is discovered (by someone) until the organization controlling
the software learns of it and provides a patch, the vulnerability is known as a zero-day
vulnerability. The software is exposed during that interval and until a patch is released and
applied. During this period of exposure, the options for defense from attack are limited to
whitelisting,11 applying common secure configurations, isolation, or removal.

When assessing risk, it is important to understand that the number of reported software
vulnerabilities is not necessarily proportional to the actual number of software vulnerabilities
across software vendors and products. Software that is implemented across platforms (e.g.,
Acrobat and Java) or implemented on the most widely used platforms (e.g., Microsoft or Cisco)
typically presents the most attractive investments of time for attackers looking to cost-effectively
exploit vulnerabilities. Consequently, code on widely used platforms report the most
vulnerabilities.

The higher volume of reported vulnerabilities might be due to the increased focus of
vulnerability research and reporting on more widely used software. However, a larger number of
publicly disclosed vulnerabilities over a series of software releases typically indicates a higher
degree of software provider maturity. It is not unusual for the providers of software platforms to
have robust vulnerability disclosure, reporting, and management programs, all positive indicators
of good risk management practices by the software provider. Conversely, it cannot be assumed
that products with no reported vulnerabilities have no vulnerabilities.

The National Vulnerability Database [NVD] publishes CVE information to the public in a
standard, machine-readable format. The NVD is one of the most comprehensive U.S.
Government open sources of information on known and analyzed software vulnerabilities. The
CVE Program also maintains a CVE dataset which might contain additional vulnerabilities12 but
provides less information about each vulnerability. Throughout this document the term NVD is

10 The vendor organization as defined in Section 2.3.3.
11 Note that while malware cannot execute in a whitelisted environment because it is unauthorized, attackers can still gain entry
to an environment via unmitigated vulnerabilities in the whitelisted software itself. Consequently, software vulnerability
management is of high priority even in a whitelisted software environment.
12 The CVEs listed at [CVE] have been described less completely as stated on the MITRE website, which links to the NVD for
more detailed descriptions. At the time of this publication, the CVE Program is in transition, and the organizations managing the
CVE Program and associated websites may change.

NISTIR 8011 VOL. 4 AUTOMATION SUPPORT FOR
 SECURITY CONTROL ASSESSMENTS: VUL

9

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

used to refer to both nvd.nist.gov and cve.mitre.org. On occasion, industry is aware of publicly
disclosed vulnerabilities not yet catalogued in NVD, but such sources are generally proprietary,
not open.

Vulnerabilities are typically identified in the following ways:

• Each CVE entry in the NVD [NVD] is identified by CVE [CVE] numbering authorities

[CNA]. A CNA may be a vendor, open source provider, or a researcher. The NVD
receives a data feed from the CVE.

• Reputable software manufacturers with a mature and robust vulnerability management
program report verified vulnerabilities.

• Vulnerabilities are reported by third-party ethical hackers.

Some vulnerabilities discovered in code that can be exploited as vulnerabilities are not publicly
reported through the CVE Program and are therefore not listed in the NVD as CVEs.13 There are
several reasons a known vulnerability might not be publicly disclosed, including but not limited
to the following:

• The vulnerability may have been discovered only by criminals and/or intelligence

services who plan to exploit the vulnerability at some point and thus do not want it
disclosed.

• The vulnerability might exist only in custom software and/or industrial control systems.
Because of the limited number of users—and the potential sensitivity of the systems
involved—such vulnerabilities might not be listed in the NVD because disclosing them
might increase the risk of attack more than it would protect the affected systems.

• The vulnerability might exist in commercial off-the-shelf (COTS) software but might not
be announced until a patch is available because disclosing it is thought to increase the
risk of attack more than it would protect systems.

• The vulnerability might have been discovered by a vulnerability scanning provider before
a CNA had assigned it a CVE ID.

Because of variations in vendor and attacker efforts to expose vulnerabilities as well as attacker
efforts to conceal unreported vulnerabilities they have discovered, the number of CVEs listed for
a software product is not necessarily reflective of the number of vulnerabilities actually present
in the product.

13 Some vendor organizations choose not to report vulnerabilities through the CVE Program and maintain vulnerability
information and provide patches for their products via proprietary processes.

NISTIR 8011 VOL. 4 AUTOMATION SUPPORT FOR
 SECURITY CONTROL ASSESSMENTS: VUL

10

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

2.3.2 Common Weakness Enumerations (CWEs)

The Common Weakness Enumeration (CWE) is a taxonomy of well-known poor coding
practices that are observed to manifest themselves in production software [CWE]. An example of
a poor coding practice is Improper Input Validation, which is described on the CWE website:

“When software does not validate input properly, an attacker is able to craft the input in a
form that is not expected by the rest of the application. This will lead to parts of the
system receiving unintended input, which may result in altered control flow, arbitrary
control of a resource, or arbitrary code execution.” [CWE]

Without adequate validation, an attacker may be able to change the program flow in an
unintended way that creates a security vulnerability. See [CWE] for more examples.

Important characteristics of common weaknesses relevant to automated assessment include:

• Code analyzers are typically either static or dynamic. Static code analyzers are used to
review bodies of source code (at the programming language level) or compiled code (at
the machine language level). Dynamic code analyzers are used for observing code
behavior as it executes, probing the application, and analyzing the application responses.

• While a CVE entry in the NVD often conveys information about the poor coding practice
(i.e., the CWE) that resulted in the CVE, there is no guarantee that a CWE will result in a
CVE. If the code is not analyzed, probed, or the weakness is not detected, then perhaps
the flaw may not be noticed. In such a case, the flaw may eventually become a CVE.

• Even if the code is analyzed, and a piece of code is tagged as a CWE, it still may not
actually result in a CVE because the code analyzers employed to detect poor coding
practices produce many false positive results (i.e., the code analyzers identify code as
containing poor coding practices when it does not).

• A code analyzer-identified poor coding practice that has not yet been verified to be a
false positive is treated as if it were a software vulnerability. Because of the frequent
occurrence of false positives in reports from code analyzers, remediation efforts often
involve independent validation and verification of the identified poor coding practice.
The additional analysis is needed to decide whether specific reported instances of poor
coding practices are ignored (because they are false positives) or acted upon (because
they are confirmed true positives) with subsequent appropriate response or reporting.

• CWEs are primarily of interest to parties who have control over and maintain source
code—developers or testers in an organization that creates COTS, government off-the-
shelf (GOTS), or custom code. However, CWEs are also of interest to organizations
requiring verification of the security worthiness (i.e., the need for additional software
security assurance) of software before deploying that software in a production
environment.

NISTIR 8011 VOL. 4 AUTOMATION SUPPORT FOR
 SECURITY CONTROL ASSESSMENTS: VUL

11

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

There are three primary methods employed to ensure that code does not contain instances of
CWEs. In order of effectiveness, the methods are:

1. Acquiring developers experienced with secure coding practices, and ensuring that

existing developers are trained in secure coding practices;

2. Adopting processes to ensure that code is independently reviewed by a team of
programmers experienced with secure coding practices; and

3. Using code analyzers, which can frequently find poor coding practices in code after it has
been written or compiled; code analyzers automate review of applications.

2.3.3 Roles for Mitigation of CVEs and CWEs

To understand the NISTIR 8011-defined operational roles in vulnerability management, one
must first consider the broader organizational roles. The Carnegie Mellon CERT special report,
The CERT Guide to Coordinated Vulnerability Disclosure [SEI], describes vulnerability
management roles as shown in the following diagram:

Figure 2: Organizational Roles in Vulnerability Information Disclosure [SEI]

NISTIR 8011 VOL. 4 AUTOMATION SUPPORT FOR
 SECURITY CONTROL ASSESSMENTS: VUL

12

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

Sometimes the roles are organizations, and sometimes the roles are individuals.

• Roles that are most frequently individuals include: finder, reporter, and deployer (e.g.,
home users, organizational users, system administrators).

• Roles that are most frequently organizations include: vendor and coordinator as well as
deployer when the software is implemented in a government or business organization
(e.g., software flaw manager, patch manager).

The role name vendor requires additional explanation. The relevant entity is the party that
currently maintains the software that has the vulnerability. As the Carnegie Mellon CERT report
states, “The vendor is the party responsible for updating the product containing the
vulnerability.” Thus, a vendor, in the context of vulnerability management, is not a third-party
vendor from which the deployer (individual user or organization) purchased the software.

Note that for custom or in-house software code, the “party responsible for updating the product”
may be an employee or group within the deployer organization or a service provider contracted
by the deployer organization.

The coordinator role depicted in Figure 2 is normally external to the assessment organization
and is not addressed in NISTIR 8011. Typically, the coordinator role is performed by groups
such as SEI, the vulnerability scanner vendor, and others listed in the source document.

For maintained and authorized software, the NISTIR 8011-defined roles involved in the
mitigation of CWEs and CVEs are the roles of Software Flaw Manager (SWFM), which
corresponds to the CERT-defined vendor role, and Patch Manager (PatMan) which corresponds
to the CERT-defined deployer role.14 NISTIR 8011-defined roles for mitigation of CWEs and
CVEs are depicted in Figure 3. Note that for unauthorized software, no patch is generated for a
CVE, and there is likely to be no mitigation short of isolation or removal.

14 For all roles supporting the VUL capability, see Section 2.7.

NISTIR 8011 VOL. 4 AUTOMATION SUPPORT FOR
 SECURITY CONTROL ASSESSMENTS: VUL

13

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

SWFM

Software Flaw Manager (SWFM)
(Vendor Organization Role)15

For software maintained by the vendor
organization:
• Creates patches for CVEs on software

products maintained by the vendor
organization (e.g., COTS and GOTS, software
developed for others, or custom software
developed for the organization)

• Finds CWEs on software maintained by the
vendor organization and remediates

• Sometimes finds CWEs on COTS and GOTS
developed by others16

For software no longer maintained:
• No patches are developed (unsupported)

PatMan

Patch Manager (PatMan)
(Deployer Organization Role)

For authorized software:
• Finds devices with software needing

application of patches created by the SWFM
(i.e., installed software with CVEs)

• Applies patches to repair CVEs on installed
software products.

For unauthorized software:
• Implements mitigation for unauthorized

software (e.g., removal, isolation)

Figure 3: CVE and CWE Mitigation Roles

The SWFM and PatMan roles do not necessarily correspond to a person or people assigned
exclusively to the tasks described in Figure 3. Rather, the tasks associated with the SWFM and
PatMan roles may be duties included within broader roles.

2.3.3.1 Software Flaw Manager (SWFM)

The SWFM is a vendor organization role. As such, it may be the responsibility of a third-party
vendor organization over which the software-owning organization has little control (e.g., for
most COTS software), or it may be the responsibility of the software-owning organization itself
(e.g., for custom software developed in-house).

When a new vulnerability is discovered and confirmed to exist for software maintained by the
vendor organization, the vulnerability is reported to the CVE Program so it can be listed as a

15 Note that the SWFM role is typically a sub-role of software developer/maintainer or software development/maintenance
manager rather than a completely separate role. The SWFM role is specified here because it is instrumental in mitigating software
vulnerabilities as part of the VUL capability.
16 Finding CWEs in software developed by others occurs primarily when the deployment organization has an internal SWFM and
employs dynamic code scanners to look for use of CWE-listed coding practices in COTS or GOTS products developed by others.

NISTIR 8011 VOL. 4 AUTOMATION SUPPORT FOR
 SECURITY CONTROL ASSESSMENTS: VUL

14

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

CVE (or a decision is made not to, or when to, report the vulnerability).17 The Software Flaw
Manager (SWFM) within the vendor organization (i.e., the organization maintaining the software
source code) then creates a new patch to mitigate the vulnerability.

• For COTS or externally maintained GOTS software, the patch is developed by the SWFM of
the external vendor organization.

• For custom or internally maintained GOTS software, the patch is developed by the SWFM of
the internal organization (vendor and deployer).

In either case – CVE or CWE mitigation – the SWFM is responsible for reporting poor coding
practices and vulnerabilities within maintained software when discovered internal to the vendor
organization, assessing the extent of code repairs required, making the necessary repairs,
preparing a patch, performing integration, testing of the patch, preparing documentation, and
distributing the finished patch to the deployer organization(s).

2.3.3.2 Patch Manager (PatMan)

The Patch Manager (PatMan) is a deployer organization role that exists in the organization that
has authorized and implemented the software (deployer organization).

The PatMan is responsible for detecting instances of CVEs present on devices and authorized
software where available patches or a workaround solution needs to be applied. Software (i.e.,
code), as used here, is typically managed at the following levels of analysis:

• Software files (identified by digital fingerprint)

• Software source code (i.e., content of the software file[s] at the version/release/patch
level)

• Software products (at the version/release/patch level)

• Firmware, if it can be modified (usually includes the BIOS, at the version/release/patch
level)

The importance of accurately detecting the particular version/release and patch level of software
cannot be overstated with respect to vulnerability management. Accurate version/release and
patch level detection is important because variations of a software version/release and its
corresponding patch level present different vulnerabilities depending on which patches have
already been applied to that version/release. Digital fingerprints uniquely identify a particular
version/release and patch level of a software file.

The primary tools employed by the PatMan in detecting CVEs present on a system are
commercial vulnerability scanners. Vulnerability scanners automate the identification of CVEs

17 For example, the vulnerability might not be reported until a patch is developed to prevent exploitation in the interim.

NISTIR 8011 VOL. 4 AUTOMATION SUPPORT FOR
 SECURITY CONTROL ASSESSMENTS: VUL

15

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

and the associated patches needed for each software file installed on each device in a system.
Patches, in turn, contain information on the respective CVE(s) they are mitigating.

The PatMan is responsible for receiving patches from internal or external development
organizations (i.e., vendor organizations), testing patch interoperability on the local system, and
applying patches to devices in the production environment. Some CVEs can be mitigated by
means other than patching before a patch becomes available. If so, the PatMan is responsible for
applying any workaround mitigations in the interim period.

Patches are typically applied via a package management system which automates the steps of
installation, upgrade, configuration, and removal of software files.18 Alternatively, patches can
be applied manually.

Some software products have patches that must be applied in a sequential order, in which case it
is reasonable to refer to a patch level. Other products allow the selective application of patches in
various orders. In such cases, the use of the expression patch level is more accurately denoted by
the term patch set.19 Patch sets are inherently more complex than patch levels because of the
large number of combinations possible for the allowable order in which patches are applied. In
this document, the term patch level refers to whichever patch level or patch set is applicable.

Patching complexity introduced by shared code. Some executables are shared by several
software products. Dynamic Linked Library (DLL) executable files are prominent examples of
shared software. In the case of DLL patching, one product may either protect or expose another
product, depending on the vulnerabilities in the latest patch of the DLL installed and how the
dependent software makes use of the library. For example, the “Heartbleed” vulnerability was
found in the OpenSSL cryptography library but affected only the Transport Layer Security (TLS)
implementation provided by OpenSSL. At the same time, OpenSSL cryptographic algorithm
application programming interfaces (APIs) were not vulnerable. Thus, OpenSSL
implementations of TLS exposed the Heartbleed vulnerability while OpenSSL implementations
of only the cryptographic functions did not. Therefore, the shared nature of some software
products is therefore a factor which complicates software vulnerability management.

Patches on top of patches. Unfortunately, it is still possible for a patch itself to contain
additional software flaws that may be discovered later. Even if a given patch is free of known
flaws, it is possible and even likely that new or different poor coding practices will be
subsequently discovered that create new CVE entries in the NVD or result in new zero-day
attacks to be exploited by adversaries.

18 Examples of package management systems include but are not limited to Microsoft Windows Store, Linux Red Hat RPM
Package Manager, Apple Mac App Store, Debian DPKG, and Comprehensive Perl Archive Network.
19 Where patch sets are specified, the order of patch application can still affect the outcome (for example, when two or more
patches change the same file).

NISTIR 8011 VOL. 4 AUTOMATION SUPPORT FOR
 SECURITY CONTROL ASSESSMENTS: VUL

16

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

2.4 Example VUL Data Requirements20

The desired state for the VUL capability is that the list of known vulnerabilities is up to date,
accurate, and complete; and software products installed on all devices are free of known
vulnerabilities.21 Examples of data requirements for the VUL capability actual state are in Table
3. Examples of data requirements for the VUL capability desired state are in Table 4.

Table 3: Example VUL Actual State Data Requirements

Data Item Justification
The vulnerable software installed on every device is
identified

To identify software flaws

Device software that is compliant with alternative
mitigation specifications (to include the
corresponding CVEs or local identifiers for flaws that
are appropriately mitigated)

To prevent appropriately mitigated flaws from
appearing in the results

Data necessary to determine how long the flaw has
been present on a device; at a minimum:

• Date/time flaw was first discovered on the
device

• Date/time flaw was last seen on the device

To determine how long vulnerabilities have been
present on a device

20 Specific data required to support the VUL capability is variable based on organizational platforms, tools, configurations, etc.
21 It is rarely possible or feasible to have no known vulnerabilities present (e.g., when a patch is not yet available or when a low
risk vulnerability has not yet been patched), so the goal is to minimize the presence of known vulnerabilities in the environment.

NISTIR 8011 VOL. 4 AUTOMATION SUPPORT FOR
 SECURITY CONTROL ASSESSMENTS: VUL

17

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

Table 4: Example VUL Desired State Data Requirements

Data Item Justification
Authorized Hardware Inventory To identify what devices to check
Associated value for every device attributea To prioritize defects associated with devices
A version-controlled, dated listing of all software
products that have at least one known flaw, to
include:

• Vulnerable software product in same format
as the Authorized Software Inventory
(Common Platform Enumeration [CPE] or
Software Identification [SWID] [IR8060]
equivalent)

• All CVEs associated with that software
product

• All CWEs associated with that software
product

For every locally definedb known vulnerability,
maintain a version-controlled, dated listing to
include:

• Vulnerable software product in same format
as the Authorized Software Inventory (CPE
or SWID equivalent)

• Identifier of all local vulnerabilities
associated with that software product (e.g.,
CWE or other local identifier)

• Severity for each local vulnerability (e.g.,
Common Vulnerability Scoring System
[CVSS] score equivalent)

To report on known flaws present on the system

Alternative mitigation specificationc for any known
vulnerability where the source vendor provides a
mitigation option that can be implemented instead
of patching/re-versioning the software to include:

• CVE or local identifier
• Associated system attributes
• Required/acceptable values

To prevent reporting on flaws mitigated by
alternative methods for which the mitigation can
be automatically checkedd

Compliance definition (desired state specification
criteria)

To determine compliance with each specific
check

a This value is defined by the organization based on the value it assigns to assets. See [IR8011-1] for an explanation of device
attributes.
b Organizations can define data requirements and associated defects for their local environment.
c Some known vulnerabilities can be effectively mitigated by not installing sections of code, executables, or via configuration options.
d If the check that determines implementation of the alternative mitigation method can be verified by checking registry settings,
executable hashes, or configuration settings, then a specification can be defined to automatically determine presence of the
vulnerability.

2.5 VUL Concept of Operational Implementation

VUL identifies software (including on/in virtual machines) that is actually present on network
devices (the actual state) and compares it with the desired state inventory to determine what
known vulnerabilities (or weaknesses) are present on the software and deploy patching (or
alternative methods of mitigation) to reduce the exploitability of the system.

NISTIR 8011 VOL. 4 AUTOMATION SUPPORT FOR
 SECURITY CONTROL ASSESSMENTS: VUL

18

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

The software vulnerability management capability concept of operations (CONOPS) illustrates
how the VUL capability might be implemented. The CONOPS is central to the automated
assessment process. (See Figure 4)

Figure 4: VUL Concept of Operations (CONOPS)

Identify patch versions
authorized for software

products and files, software
flaws for the product patch
levels, and corresponding

mitigation methods
Collect Desired State

Search for and identify all
software product versions

and files installed on
devices, as well as their

associated flaws

Collect Actual State

Compute the differences
between actual state and
desired state (CVEs and
CWEs) and score them

Find/Prioritize Defects

Remove, replace, patch,
mitigate, authorize,

assign for management,
and/or (temporarily?)
accept the risk of not

mitigating software flaws

Mitigate Defects

Add patch identifiers
to desired state if
appropriate; assign a
manager if not
already done;
periodically update
known software
flaws.

CVE: Remove
or replace
software on
device, or
respond to
software
flaws

CWE: Recode
software to
avoid CWE
(and potential
CVEs),
creating a
new patch

Accept risk
(e.g., while
awaiting
patch)?

Managers validate
assigned roles and
responsibility

Scored Defects
ONLY

NISTIR 8011 VOL. 4 AUTOMATION SUPPORT FOR
 SECURITY CONTROL ASSESSMENTS: VUL

19

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

2.5.1 Collect Actual State

The ISCM data collection process uses tools to identify the software files (and products) on
network devices at the patch level, including software residing on mass storage and in firmware.
The tools further provide the information required to compare the actual software and patch
levels discovered (actual state) with the authorized patch levels (desired state). Examples of
methods used to identify actual and desired patch levels are described in this section.

The ISCM data collection process also identifies how much of the target network is being
monitored and how frequently in order to finalize the completeness and timeliness
metrics. Devices might not be monitored on a specific scan because the device is not connected;
the device is turned off; there is an error with the scanning process; the device is in a protected
enclave not available to scanning; or the device is in an unexpected Internet Protocol (IP) address
range (if the scanner is programmed for specific ranges); etc. Note that the inventory from the
Hardware Asset Management (HWAM) capability can also be used as a check on what should be
scanned if the quality of inventory data is acceptable.

The actual state data for all capabilities requires effective configuration management. Appendix
G specifies how configuration management of the actual state is to be performed. The controls
listed in Appendix G are metacontrols for the VUL capability assessment process.

2.5.1.1 Actual State Data from the Operating System Software Database22

Some organizations use the operating system software database (OSSD) as a source for actual
state data on the software versions present. However, OSSDs have several operating
characteristics that may lead to errors in identifying software versions as described below:

• Software is missing in the OSSD. Some software on the device can run without having
an OSSD entry (i.e., the OSSD might not be able to identify some software because there
is no OSSD entry for the software).

• Entry in the OSSD does not completely identify the software installed. Different
instances of installation media for a particular product version might install slightly
different executables and thus might therefore have a different set of vulnerabilities. The
OSSD might not detect this.

• Uninstall processes for a product might remove the entry for a software file in the
OSSD but not remove all of the code. Problems with the uninstall process may leave
open the possibility that vulnerable code remains on the device that is not identified in the
OSSD and can therefore be exploited but is not identified in the OSSD.

22 For example, the Windows registry or Linux package manager.

NISTIR 8011 VOL. 4 AUTOMATION SUPPORT FOR
 SECURITY CONTROL ASSESSMENTS: VUL

20

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

• OSSD does not contain shared code. Use of the OSSD as a source does not address
shared code, which might be changed in the process of patching any of the programs that
use the shared code. See Section 2.5.2.6.

2.5.1.2 Actual State Data from Vulnerability Scanners

Use of vulnerability scanners is one of the most common ways to find CVEs in the actual state.
Vulnerability scanners compare a list of software file versions known to contain vulnerabilities
to the actual software file versions present on system devices. To ensure risk is accurately
portrayed, verification of vulnerability scanner functionality is advisable before trusting results
from a scanner. Vulnerability scanner verification includes the following:

• Ensure the vulnerability scanner is programmed by the organization to check for a high
percentage of known vulnerabilities. If not, it might report fewer vulnerabilities than
those that actually exist. The organization verifies the percentage of known
vulnerabilities addressed by the scanner by comparing what the scanner checks for with
the NVD and accepts the percentage addressed as part of the acquisition process for the
scanner.

• Ensure that the false positive and false negative rates of the scanner are acceptable. No

test is 100 % reliable. The tests used by the scanner to identify a vulnerability can report
vulnerabilities when none exist (false positives), or the tests can fail to report
vulnerabilities that do exist (false negatives). The false positive and false negative rates of
the scanner are assessed as part of the acquisition process. Typically, there is an inverse
relationship between false positive and false negative frequencies—as one goes up, the
other goes down. There is a need to balance the two (i.e., balancing the risk of allowing
excessive reporting of vulnerabilities that are not actual vulnerabilities [false positives]
against the risk of too frequently failing to catch vulnerabilities that are actually present
[false negatives]).

• Ensure that the vulnerability scanner vendor provides timely updates when new

vulnerabilities are found and that the scanner can be updated quickly23 with new
detection code. Note that implementation of both detection (scanning) and response
(patching) are necessary for vulnerability management to be effective.

2.5.1.3 Actual State Data from Software Whitelisting Inventory

To the extent that the digital fingerprint for a software file with a vulnerability is known, it can
be reliably and correctly found by inventorying software files on a device by their digital
fingerprints. See more in Section 2.5.2.3.

The main problem with data from a software whitelisting inventory is that, at the time of this

23 Quickly, here, is defined by the organization considering the expected speed with which adversaries are likely to exploit an
undetected vulnerability.

NISTIR 8011 VOL. 4 AUTOMATION SUPPORT FOR
 SECURITY CONTROL ASSESSMENTS: VUL

21

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

writing, neither the NVD nor vendors report the digital fingerprint(s) of the software files
carrying specific known vulnerabilities.24

2.5.1.4 Actual State Data from Code Analyzers

Both dynamic and static code analyzers (see Glossary) are used to identify coding weaknesses
that might materialize as vulnerabilities. Code analyzers are usually deployed prior to moving
software to the operational state (i.e., in the earlier phases of the system engineering/system
development life cycle) because the weaknesses found are cheaper to fix at the early stages of
development.

In cases where the organization does not control the source code but desires to assess whether
acquired products (or products whose acquisition is under consideration) have been engineered
securely, dynamic code analyzers are frequently deployed to identify and diagnose security
weaknesses. The organization deploys the acquired code in a production-like test environment,
preferably before final purchasing decisions are made, and assesses whether weaknesses are at an
acceptable level considering organizational risk tolerances.

2.5.2 Collect Desired State

The desired state for the VUL capability is the list or inventory of acceptable software file
versions that limit known flaws in software installed on the network to within organizational risk
tolerances. Thus, defining the desired state requires knowing how to identify—for all software
files on the network—the optimal versions (i.e., patch levels) which contain the fewest known
flaws. As indicated in the discussion of data collection methods below, identifying the desired
state is a continually evolving process of incorporating and integrating information from multiple
sources and, in some cases applying organizational risk tolerances to specific cases.

The desired state data for all capabilities requires effective configuration management. Appendix
G specifies how configuration management of the desired state is to be performed. The controls
in Appendix G are metacontrols for the VUL capability assessment process.

2.5.2.1 Desired State Data from the National Vulnerability Database (NVD)

Since the desired state for the VUL capability, with respect to CVEs, is to have the most flaw-
free software available, the NVD is an important source of information about CVEs to be
minimized in the desired state. Each CVE has a unique identifier, and the NVD is the
authoritative source of CVEs. Since NVD data is available to the public in digital form, many
parties engaged in vulnerability identification and remediation download the NVD data and then
integrate it with additional data, such as signatures for software files containing the CVE, articles
written about the CVE, or identifiers for patches to the CVE.

24 Requiring vendors to report data using digital fingerprints to reliably detect vulnerabilities would be a significant improvement
to the vulnerability detection process.

NISTIR 8011 VOL. 4 AUTOMATION SUPPORT FOR
 SECURITY CONTROL ASSESSMENTS: VUL

22

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

2.5.2.2 Desired State Data from Vulnerability Scanners

In addition to providing actual state data (as described in Section 2.5.1.2), vulnerability scanners
are also a source of desired state data. Vulnerability scanners attempt to find known
vulnerabilities in software on networked devices on a system by taking the CVE information
from the NVD, linking the CVEs to identifiers for the software known to contain the CVEs, and
then checking for the existence of the CVE-mitigating software patches on networked devices.
The desired state, from the perspective of any given scan, is to have no CVEs present in
software.25

Note: Since any given vulnerability scanner might only check for a portion of known
vulnerabilities, each scanner defines the desired state differently.

2.5.2.3 Desired State Data from Developer Package Manifests

One reason that vulnerability scanners are commercially viable is that they provide an acceptable
approximation—within tolerable ranges of precision—of the specific instances of code on a
device matching code known to contain CVEs. Package manifests provide an even more reliable
option for identifying CVEs and their patches if they also contain digital fingerprints of each
file.26 Now, developers can (and frequently do) provide the following patch level file manifest
information about each version:

• CVEs in that version

• An enumeration of the software files that contain each vulnerability, files that contain the
fix for the vulnerability, and the respective digital fingerprint for each

When patch level manifest information is provided, scanners can provide very precise
descriptions of the actual state (what CVEs are present) and desired state (what precise files
should be there and at what patch level) for vulnerabilities on devices. When vendor-provided
manifests at the patch level are used, the potential to limit error rates in scanning for
vulnerabilities—both false positives and false negatives—is highest. Patch level manifests could
come from SWID tags.

2.5.2.4 Desired State Data from Approved Patch Level List

Some organizations simply develop an approved (and required) patch list. The approved patch
list becomes the desired state. Any software without the required patches and/or other
mitigations is tagged as vulnerable. The organizationally approved patch list is based on risk
tolerance and is manually managed.

25 Stated more precisely, the desired state is to have all of the software patched to the level consistent with organizational risk
tolerances. For example, some organizations can tolerate CVEs considered by the organization to be low risk, for example.
26 Package manifests enumerate the files contained in a patch distribution. If the manifest also contains a digital fingerprint for
each file, then the entire contents of the patch can be validated for integrity/authenticity. Therefore, a more reliable approach to
identifying CVEs is to require software vendors to provide package manifests that include a digital fingerprint for each file.

NISTIR 8011 VOL. 4 AUTOMATION SUPPORT FOR
 SECURITY CONTROL ASSESSMENTS: VUL

23

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

2.5.2.5 Desired State Data from CWE (Coding Weakness) Information

The desired state for the VUL capability with respect to CWEs is that software exhibits no
CWEs inconsistent with the organization’s risk tolerance. Collecting and responding to CWE
information is an important part of the process for custom software development. CWE
information is also important for commercial software that organizations plan to deploy where
the vendor is not yet trusted to find and report software vulnerabilities. Examples of tools for
discovery of the actual and desired states for CWEs are discussed in Section 2.3.2.

2.5.2.6 Desired State Data from Shared Code

Risk from software vulnerabilities may be further reduced by addressing shared code in the
desired state. It is possible for an organization to identify software files updated by different
products and compare the identified software files to the vulnerability list for the product or
products using the shared code in order to identify whether a shared code file included in a patch
is in the desired state.

2.5.3 Find/Prioritize Defects

The VUL capability focuses on comparing the versions of software objects discovered inside the
assessment boundary (actual state) with an up-to-date list of the versions of software objects
which should be there (desired state) and prioritizing a response (usually patching the vulnerable
software). The desired state software objects are the versions selected for lowest risk of
unpatched vulnerabilities. While the comparison of actual and desired state is most frequently
performed with the assistance of commercial vulnerability scanners using vulnerability and patch
information often derived from CVEs, other defects related to vulnerability management—such
as CWEs the organization determines must be fixed—might be identified for unknown
vulnerabilities with code analyzers. In any case, after the actual state to desired state comparison
is completed, identified defects are prioritized27 so that the appropriate response action (i.e.,
higher risk problems addressed first) can be taken.

2.6 NIST SP 800-53 Controls and Control Items that Support VUL

This section describes how the NIST SP 800-53 controls and control items needed to support the
VUL capability were identified as well as the nomenclature used to clarify each control or
control item’s focus on software vulnerabilities.

2.6.1 Process for Identifying Needed Controls

The process used to determine the NIST SP 800-53 controls and control items needed to support
a capability is described in detail in Volume 1 of this NISTIR, Section 3.5.2, Tracing Security
Control Items to Capabilities. In short, the two steps are:

27 Risk prioritization methods, which are necessary to score or prioritize defects, are out of scope for this publication. See
[SP800-30] and [SP800-39] for a discussion on risk management, risk assessment, and risk prioritization.

NISTIR 8011 VOL. 4 AUTOMATION SUPPORT FOR
 SECURITY CONTROL ASSESSMENTS: VUL

24

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

1. Use a keyword search of the NIST SP 800-53 control text to identify controls or control
items that might support the capability. See keyword rules in Appendix B.

2. Manually identify the NIST SP 800-53 controls or control items that do support the
capability (true positives) and ignore those that do not (false positives).

The two steps above subsequently produce three sets of NIST SP 800-53 controls/control items:

1. Controls/control items in the low, moderate, and high baselines that support the VUL
capability (listed in Section 3.3 and Section 3.4).

2. Controls/control items in the low, moderate, and high baselines that were selected by the
keyword search but were manually determined to be false positives (listed in Appendix
C).

3. Controls which were not in a baseline, and not analyzed further after the keyword search
as follows:
a. Program management (PM) controls, because PM controls do not apply to individual

systems;
b. Not selected controls—controls that are in NIST SP 800-53 but are not assigned to

(selected in) a baseline; and
c. Privacy controls.

The unanalyzed controls/control items are listed in Appendix D, in case the organization
wants to develop automated tests.

2.6.2 Control Item Nomenclature

Many control items that support the VUL capability also support several other capabilities. For
example, the hardware asset management, software asset management, and configuration
settings management capabilities can benefit from configuration management controls.

To clarify the scope of control items that support multiple capabilities as they relate to the VUL
capability, expressions in the control item text are enclosed in curly brackets, e.g.,
{…software…}, to denote that a particular control item supports the VUL capability and focuses
on—and only on—what is inside the curly brackets.

2.7 VUL-specific Roles and Responsibilities

Table 5 describes VUL-specific roles and their corresponding responsibilities. Figure 5 shows
how the roles integrate with the concept of operations. An organization implementing automated
assessment can customize its approach by assigning (allocating) the responsibilities to persons in
existing roles.

NISTIR 8011 VOL. 4 AUTOMATION SUPPORT FOR
 SECURITY CONTROL ASSESSMENTS: VUL

25

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

Table 5: Operational and Managerial Roles for VUL28

Role Code Role Title Role Description Role Type
DSM Desired State

Managers
(DSM)

Desired state managers are needed for both the ISCM Target
Network and each assessment object. The desired state
managers ensure that data specifying the desired state of the
relevant capability is entered into the ISCM system’s desired
state data and is available to guide the actual state collection
subsystem and identify defects. The DSM for the ISCM Target
Network also resolves any ambiguity about which system
authorization boundary has defects (if any).

Authorizers share some of the responsibilities by authorizing
specific items (e.g., devices, software, or settings) and thus
defining the desired state as delegated by the DSM. The DSM
oversees and organizes this activity.

Operational

ISCM-Ops ISCM
Operators

(ISCM-Ops)

ISCM operators are responsible for operating the ISCM
system (see ISCM-Sys).

Operational

ISCM-Sys
(Automated)

The
automated
system that

collects,
analyzes, and
displays ISCM

security-
related

information

ISCM-Sys is an automated role. It is included here to show
tasks automated by the approach presented in this NISTIR.

The ISCM system: a) collects the desired state specification,
b) collects security-related information from sensors (e.g.,
scanners, agents, training applications), and c) processes that
information into a useful form.

To support task C, the system conducts specified defect
check(s) and sends defect information to an ISCM dashboard
covering the relevant system(s). The ISCM system is
responsible for the assessment of most NIST SP 800-53
security controls.

Operational
(Automated)

MAN Manual
Assessors

Assessments not automated by the ISCM system are
conducted by human assessors using manual/procedural
methods. Manual/procedural assessments might also be
conducted to verify the automated security-related information
collected by the ISCM system when there is a concern about
data quality.

Operational

PatMan Patch
Manager
(PatMan)

Assigned to a specific device or group of devices, patch
managers are responsible for patching software products on
affected devices. The patch managers are specified in the
desired state specification. The patch manager may be a
person or a group. If a group, a group manager is designated.

Note: The patch manager role might be performed by the
device manager from the HWAM capability or the SWMan
from the SWAM capability, depending on the volume of
patching required. The role might also be performed by an
automated central process managed by a centralized or
distributed patch management team.

Operational

28 The role is filled by a person or a team unless stated that it is automated.

NISTIR 8011 VOL. 4 AUTOMATION SUPPORT FOR
 SECURITY CONTROL ASSESSMENTS: VUL

26

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

Role Code Role Title Role Description Role Type
RskEx Risk

Executive,
System

Owner, and/or
Authorizing

Official
(RskEx)

Defined in SP 800-37 [SP800-37] and SP 800-39 [SP800-39] Managerial

SWFM Software Flaw
Manager
(SWFM)

Assigned to a specific software product or group of software
products, software flaw managers are responsible for ensuring
that CWE instances resulting in vulnerabilities in authorized
software are found and corrected. As such, the SWFM is
usually part of the development/maintenance team. The
SWFMs are specified in the desired state specification for
software products. The SWFM may be a person or a group. If
a group, a group manager is designated.

Note: Most SWFM activities occur during systems
engineering, but the process produces data to ensure that
flaws are scored for software in production on the target
network. Many (but not all) COTS software manufacturers
track and score flaws independently.

The SWFM supports the desired state manager to ensure that
risks from poor coding are tracked for custom software and
software for which the manufacturer does not track security
flaws.

Operational

SWMan Software
Manager

Software managers are assigned to specific devices and
responsible for installing and/or removing software from the
device. The key aspects of the software manager’s
responsibility are to ONLY install authorized software and to
promptly remove ALL unauthorized software found. The
software manager is also responsible for ensuring that
software media is available to support the roll back of changes
and restoration of software to prior states.

This role might be performed by the DM (device manager)
and/or the PatMan (patch manager).

If users are authorized to install software, they are also
SWMans (software managers) for the relevant devices.

Operational

NISTIR 8011 VOL. 4 AUTOMATION SUPPORT FOR
 SECURITY CONTROL ASSESSMENTS: VUL

27

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

Scored Defects ONLY

Software Flaw and Patch Managers

Identify patch versions authorized for
software products and files, software

flaws for the product patch levels,
and corresponding mitigation

methods
ISCM-Sys

Collect Desired State

Search for and identify all software
product versions and files

installed on devices, as well as
their associated flaws

ISCM-Sys
Collect Actual State

Compute the
differences between

actual state and
desired state (CVEs

and CWEs) and score
them

ISCM-Sys
Find/Prioritize Defects

Remove, replace,
patch, mitigate,

authorize, assign for
management, and/or
(temporarily?) accept

the risk of not
mitigating software

flaws
 (See arrows)
Mitigate Defects

Add patch identifiers
to desired state if
appropriate; assign a
manager if not already
done; periodically
update known
software flaws.

 Accept risk (e.g., while
investigating)?

Managers validate assigned roles
and responsibility

Software
Flaw and
Patch
Managers

Risk Executive, et al.

Desired State Manager

CVE:
Remove or
replace
software on
device, or
respond to
software
flaws

CWE:
Recode
software to
avoid CWE
(and
potential
CVEs),
creating a
new patch

Figure 5: Primary Roles in Automated Assessment of VUL

NISTIR 8011 VOL. 4 AUTOMATION SUPPORT FOR
 SECURITY CONTROL ASSESSMENTS: VUL

28

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

2.8 VUL Assessment Boundary

The assessment boundary is all software on an entire network of computers from the innermost
enclave out to where the network either ends in an airgap or interconnects to other network(s),
typically the internet or the network(s) of a partner or partners. For the VUL capability, the
boundary includes software on all devices, including software on removable devices found at the
time of the scan. For more detail and definitions of some of the terms applicable to the
assessment boundary, see Section 4.3.2 in Volume 1 of this NISTIR.

2.9 VUL Actual State and Desired State Specification

For information on the actual state and desired state specification for the VUL capability, see the
assessment criteria notes section of the defect check tables in Section 3.2.

Note that many controls that support the VUL capability refer to a developed and updated
inventory of software on devices (or other inventories). Software inventory is addressed in the
SWAM capability. Note also that per the NIST SP 800-53A [SP800-53A] definition of test,
testing of the VUL controls implies the need for specification of both an actual state inventory
and a desired state inventory, allowing the test to compare the two inventories. The details of the
comparison are described in the defect check tables in Section 3.2.

2.10 VUL Authorization Boundary and Inheritance

See Section 4.3.1 of Volume 1 of this NISTIR for information on how authorization boundaries
are addressed in automated assessments. In short, for the VUL capability, software on each
device is assigned to one and only one authorization (system) boundary per NIST SP
800-53, CM-08(5), Information System Component Inventory | No Duplicate Accounting of
Components. The ISCM dashboard can include a mechanism for recording the assignment of
software to authorization boundaries, making sure all software are assigned to at least one
authorization boundary and that no software product is assigned to more than one authorization
boundary.

For information on how inheritance of common controls is managed, see Section 4.3.3 of
Volume 1 of this NISTIR. For VUL, many utilities, database management software products,
web server software objects, and parts of the operating system provide inheritable support and/or
controls for other systems. The ISCM dashboard can include a mechanism to record information
about inheritance and use it to assess the system’s overall risk.

2.11 VUL Assessment Criteria Recommended Scores and Risk-Acceptance Thresholds

General guidance on options for risk scores29 to be used to set thresholds is outside of the scope
of this NISTIR and is being developed elsewhere. For the VUL capability, organizations are
encouraged to use metrics that consider both the average risk score and maximum risk score per
device. Note that vulnerability scanning tools may perform risk scoring in their assessments of

29 In the context of VUL, a risk score (also called a defect score) is a measure of how exploitable a defect is.

NISTIR 8011 VOL. 4 AUTOMATION SUPPORT FOR
 SECURITY CONTROL ASSESSMENTS: VUL

29

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

detected vulnerabilities.

2.12 VUL Assessment Criteria Device Groupings to Consider

To support automated assessment and ongoing authorization, software is clearly grouped by
authorization boundary (see Control Items CM-8(a) and CM-8(5) in NIST SP 800-53). Software
is also clearly organized by the role of the persons—device managers, patch managers, software
managers, and software flaw managers—performing software vulnerability management on
specific devices (see Control Item CM-8(4) in NIST SP 800-53). In addition to these two
important groupings, the organization may want to use other groupings for risk analysis as
discussed in Section 5.6 of Volume 1 of this NISTIR.

NISTIR 8011 VOL. 4 AUTOMATION SUPPORT FOR
 SECURITY CONTROL ASSESSMENTS: VUL

30

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

3 VUL Security Assessment Plan Documentation Template

3.1 Introduction and Steps for Adapting This Plan

This section provides templates for the security assessment plan in accordance with NIST
SP 800-37 and NIST SP 800-53A. The documentation elements are described in Section 6 of
Volume 1 of this NISTIR. Section 9 of the same volume specifically describes how the templates
and documentation relate to the assessment tasks and work products defined in NIST SP 800-37
and NIST SP 800-53A.

Figure 6 shows the suggested steps to adapt the security assessment plan to the organization’s
needs and implement automated monitoring. The steps are expanded to more detail in the
following three sections.

3.1.1 Select Defect Checks to Automate

The sub-steps for selecting defect checks to automate are described in this section.

Take the following sub-steps, shown in Figure 7, to select which defect checks to automate:

Sub-step 1.1 Identify Assessment Boundary: Identify the assessment boundary to be covered.
(See Section 4.3 of Volume 1 of this NISTIR.)

Sub-step 1.2 Identify System Impact: Identify the Federal Information Processing Standard
(FIPS) 199-defined impact level (high water mark) for the assessment boundary identified in
Sub-step 1.1 [FIPS199]. (See [SP 800-60-v1] and/or organizational categorization records.)

Sub-step 1.3 Review Security Assessment Plan Documentation:

• Review the defect checks documented in Section 3.2 to get an initial sense of the
proposed items to be tested.

• Review the security assessment plan narratives in Section 3.2 to understand how the
defect checks apply to the controls that support vulnerability management.

1. Select Defect Checks to
Automate

2. Adapt Roles to
the Organization

3. Automate Selected
Defect Checks

Figure 6: Main Steps in Adapting the Plan Template

1.1 Identify
Assessment
Boundary

1.2
Identify
System

1.3 Review
Assessment Plan
Documentation

1.4 Select
Defect
Checks

Figure 7: Sub-Steps to Select Defect Checks to Automate

NISTIR 8011 VOL. 4 AUTOMATION SUPPORT FOR
 SECURITY CONTROL ASSESSMENTS: VUL

31

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

Sub-step 1.4 Select Defect Checks:

• Based on Sub-steps 1.1, 1.2, and 1.3 as well as an understanding of the organization’s
risk tolerance, use Table 6 in Section 3.2.3 to identify the defect checks necessary to
assess the effectiveness of controls implemented in accordance with the system impact
level and organizational risk tolerance.

• Mark the defect checks necessary as selected in Section 3.2.2. The organization is not
required to use automation, but automation of control assessment adds value to the extent
that it:

1. Produces assessment results timely enough to better defend against attacks
and/or

2. Reduces the cost of assessment over the long term.

3.1.2 Adapt Roles to the Organization

The sub-steps for adapting roles to the organization are described in this section.

Take the following sub-steps, shown in Figure 8, to adapt the roles to the organization.

Sub-step 2.1 Review Proposed Roles: Proposed roles are described in Section 2.7, VUL
Specific Roles and Responsibilities (Illustrative).

Sub-step 2.2 Address Missing Roles: Identify any required roles not currently assigned in the
organization. Determine how to assign the unassigned roles.

Sub-step 2.3 Rename Roles: Identify the organization-specific names that match each role.
(Note that more than one proposed role might be performed by the same organizational role.)

Sub-step 2.4 Adjust Documentation: Map the organization-specific roles to the roles
proposed herein, in one of two ways (either may be acceptable):

• Add a column to the table in Section 2.7 for the organization-specific role and list the
organization-specific role names there

• Use global replace to change the role names throughout the documentation from the
names proposed in this NISTIR to the organization-specific names.

2.2
Address
Missing
Roles

2.3
Rename
Roles

2.4 Adjust
Documentation

2.1
Review

Proposed
Roles

Figure 8: Sub-Steps to Adapt Roles to the Organization

NISTIR 8011 VOL. 4 AUTOMATION SUPPORT FOR
 SECURITY CONTROL ASSESSMENTS: VUL

32

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

3.1.3 Automate Selected Defect Checks

The sub-steps for automating selected defect checks are described in this section.

Take the following sub-steps, shown in Figure 9, to implement automation defect checks.

Sub-step 3.1 Add Defect Checks: Review the defect check definition and add checks as
needed based on organizational risk tolerance and expected attack types. [Role: DSM (See
Section 2.7.)]

Sub-step 3.2 Adjust Data Collection:

• Review the actual state information needed and configure automated sensors to collect
the required information. [Role: ISCM-Sys (See Section 2.7.)]

• Review the matching desired state specification that was specified or add additional
specifications to match the added actual state to be checked. Configure the collection
system to receive and store the desired state specification in a form that can be compared
automatically to the actual state data. [Role: ISCM-Sys (See Section 2.7.)]

Sub-step 3.3 Operate the ISCM System:

• Operate the collection system to identify both security and data quality defects.

• Configure the collection system to send security and data quality information to the
defect management dashboard.

Sub-step 3.4 Use the Results to Manage Risk: Use the results to respond to higher risk
findings first and measure potential residual risk to inform aggregate risk acceptance decisions. If
risk is determined to be too great for acceptance, the results may also be used to help prioritize
further mitigation actions.30

3.2 VUL Sub-Capabilities and Defect Check Tables and Template

This section describes the specific test templates that are proposed and considered adequate to

30 Risk is determined based on threats, vulnerabilities, likelihoods, and impacts. See NIST SP 800-30 [SP800-30] and NIST SP
800-39 [SP800-39] for more information on risk management, risk assessment, and risk prioritization. Automated vulnerability
scanning tools may also provide information on risk and risk prioritization for identified software vulnerabilities.

3.2 Adjust
Data

Collection

3.3
Operate

the ISCM
System

3.4 Use the
Results to
Manage

Risk

3.1 Add
Defect
Checks

Figure 9: Sub-Steps to Automate Selected Defect Checks

NISTIR 8011 VOL. 4 AUTOMATION SUPPORT FOR
 SECURITY CONTROL ASSESSMENTS: VUL

33

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

assess the control items that support the VUL capability. See Section 5 of Volume 1 of this
NISTIR for an overview of defect checks and Section 4.1 of Volume 1 for an overview of the
actual state and desired state specifications discussed in the Assessment Criteria Notes for each
defect check. Sections 3.2.1, 3.2.2, and 3.2.3 of this document describe the foundational, data
quality, and local defect checks, respectively. The Supporting Control Item(s) data in Sections
3.2.1, 3.2.2, and 3.2.3 specify which controls, when ineffective, might cause a particular defect
check to fail. The association between control items and defect checks provides further
documentation on why the check (test) might be needed. Refer to Section 3.1 on how to adapt
the defect checks (and roles specified therein) to the organization.

Data found in this section can be used in both defect check selection and root cause analysis.
Section 3.2.4 documents how each sub-capability (tested by a defect check) serves to support the
overall capability by addressing certain example attack steps and/or data quality issues.
Appendix G can also be used to support root cause analysis.

The Defect Check Templates are organized as follows:

• In the section beginning with “The purpose of this sub-capability…,” the sub-capability
being tested by the defect check is defined and assessment criteria described. How the
sub-capabilities block or delay certain example attack steps is described in Section 3.2.4.

• In the section beginning “The defect check to assess…,” the defect check name and the
assessment criteria to be used to assess sub-capability effectiveness in achieving its
purpose are described.

• In the section beginning “Example Responses,” examples of potential responses when the
check finds a defect and what role is likely responsible are described. Potential responses
(with example primary responsibility assignments) are common actions and are
appropriate when defects are discovered in a given sub-capability. The example primary
responsibility assignments do not change the overall management responsibilities defined
in other NIST guidance. Moreover, the response actions and responsibilities can be
customized by each organization to best adapt to local circumstances.

• Finally, in the section beginning “Supporting Control Items,” the control items that work
together to support the sub-capability are listed. Identification of the supporting control
items is based on the mapping of defect checks to control items in Section 3.3. Each sub-
capability is supported by a set of control items. Thus, if any of the listed supporting
controls fail, the defect check fails, and overall risk is likely to increase.

As noted in Section 3.1, this material is designed to be customized and adapted to become part of
an organization’s security assessment plan.

3.2.1 Foundational Sub-Capabilities and Corresponding Defect Checks

NISTIR 8011, Volume 4 proposes one foundational security-oriented defect check for the VUL
capability. The foundational check is designated VUL-F01.

NISTIR 8011 VOL. 4 AUTOMATION SUPPORT FOR
 SECURITY CONTROL ASSESSMENTS: VUL

34

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

Defect checks may be computed for individual checks (e.g., foundational, data quality, or local)
or summarized for various groupings of devices (e.g., device manager, device owner, system) out
to the full assessment boundary. The foundational defect check was selected for its value for
summary reporting. The Selected column indicates whether the check is to be implemented.

NISTIR 8011 VOL. 4 FOUNDATIONAL DEFECT CHECKS AUTOMATION SUPPORT FOR
 SECURITY CONTROL ASSESSMENTS: VUL

35

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

3.2.1.1 Reduce Software Vulnerabilities Sub-Capability and Defect Check VUL-F01

The purpose of this sub-capability is defined as follows:

Sub-Capability Name Sub-Capability Purpose
Reduce software

vulnerabilities
Reduce the presence of software vulnerabilities (CVEs) listed in the reference defect list (e.g., National Vulnerability
Database [NVD]).

The defect check to assess whether this sub-capability is operating effectively is defined as follows:

Defect
Check ID

Defect Check
Name Assessment Criteria Notes Selected

VUL-F01 Vulnerable
Software

1) The actual state is the list (inventory) of software product, version, release, and patch levels present on
the device.
2) The desired state specification is to have minimal (i.e., acceptable) risk from CVEs or equivalent.
3) A defect is the presence of an unacceptable software vulnerability (CVE or equivalent) as listed in the
reference defect list (i.e., National Vulnerability Database [NVD] or other vulnerability dataset accepted for
use by the organization).

Yes

Example Responses:

Defect Check ID Potential Response Action Primary Responsibility
VUL-F01 Patch the software PatMan
VUL-F01 Remove the software SWMan
VUL-F01 Assess as false positive RskEx
VUL-F01 Reduce false positives ISCM-Ops
VUL-F01 Apply workaround mitigation PatMan
VUL-F01 Accept risk RskEx
VUL-F01 Oversee and coordinate response DSM

NISTIR 8011 VOL. 4 FOUNDATIONAL DEFECT CHECKS AUTOMATION SUPPORT FOR
 SECURITY CONTROL ASSESSMENTS: VUL

36

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

Supporting Control Items:

Defect Check ID Baseline NIST SP 800-53
Control Item Code

VUL-F01 Low RA-5(a)
VUL-F01 Low RA-5(b)
VUL-F01 Low RA-5(c)
VUL-F01 Low RA-5(d)
VUL-F01 Low RA-5(e)
VUL-F01 Low SI-2(a)
VUL-F01 Low SI-2(c)
VUL-F01 Low SI-2(d)
VUL-F01 Moderate SA-11(d)
VUL-F01 High SI-2(1)

NISTIR 8011 VOL. 4 DATA QUALITY DEFECT CHECKS AUTOMATION SUPPORT FOR
 SECURITY CONTROL ASSESSMENTS: VUL

37

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

3.2.2 Foundational Sub-Capabilities and Corresponding Defect Checks

NISTIR 8011, Volume 4 proposes four data quality defect checks, designated VUL-Q01 through
VUL-Q04. The data quality defect checks are important because they provide the information
necessary to determine how reliable the overall assessment automation process is— information
which can be used to decide how much to trust the other defect check data (i.e., provide greater
assurance about security control effectiveness). The data quality defect checks were selected for
their value in summary reporting and are not associated with specific control items. The Selected
column indicates which of the checks is implemented by the organization. Data quality checks
are described more completely in NISTIR 8011, Volume 1, Overview, Section 5.5., “Data
Quality Measures.”

NISTIR 8011 VOL. 4 DATA QUALITY DEFECT CHECKS AUTOMATION SUPPORT FOR
 SECURITY CONTROL ASSESSMENTS: VUL

38

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

3.2.2.1 Ensure Completeness of Device-Level Reporting Sub-Capability and Defect Check VUL-Q01

The purpose of this sub-capability is defined as follows:

Sub-Capability Name Sub-Capability Purpose
Ensure completeness of device-
level reporting

Ensure that devices expected to report VUL information to the actual state inventory have reported to
prevent CVEs and CWEs from going undetected.

The defect check to assess whether this sub-capability is operating effectively is defined as follows:

Defect
Check ID Defect Check Name Assessment Criteria Notes Selected
VUL-Q01 Non-reporting devices 1) The actual state is the list of devices in the desired state in HWAM-F01 that report software

vulnerabilities (CVEs or equivalent, and CWEs)
2) The desired state is the list of actual devices detected in HWAM-F01, whether authorized or

not.
3) A defect occurs when a device in the desired state has not been detected as recently as

expected in the actual state. Criteria are developed to define the threshold for “as recently as
expected” for each device or device type based on the same considerations listed in HWAM-
Q01.

Yes

Example Responses:

Defect Check ID Potential Response Action Primary Responsibility
VUL-Q01 Restore device reporting ISCM-Ops
VUL-Q01 Declare device missing DM
VUL-Q01 Accept risk RskEx
VUL-Q01 Oversee and coordinate response RskEx

NISTIR 8011 VOL. 4 DATA QUALITY DEFECT CHECKS AUTOMATION SUPPORT FOR
 SECURITY CONTROL ASSESSMENTS: VUL

39

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

Supporting Control Items:

Defect Check ID Baseline NIST SP 800-53
Control Item Code

VUL-Q01 Low RA-5(a)
VUL-Q01 Low RA-5(c)
VUL-Q01 Low SI-2(a)
VUL-Q01 Low SI-2(b)
VUL-Q01 High SI-2(1)

NISTIR 8011 VOL. 4 DATA QUALITY DEFECT CHECKS AUTOMATION SUPPORT FOR
 SECURITY CONTROL ASSESSMENTS: VUL

40

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

3.2.2.2 Ensure Completeness of Defect Check-Level Reporting Sub-Capability and Defect Check VUL-Q02

The purpose of this sub-capability is defined as follows:

Sub-Capability Name Sub-Capability Purpose
Ensure completeness of defect check-
level reporting

Ensure that defect check information is correctly reported in the actual state inventory to prevent
systematic inability to check any applicable defect on any device.

The defect check to assess whether this sub-capability is operating effectively is defined as follows:

Defect Check ID Defect Check
Name Assessment Criteria Notes Selected

VUL-Q02 Non-reporting
applicable defect

checks

1) The actual state is the set of vulnerabilities that was tested and collected in each collection
cycle for each device.

2) The desired state is the set of vulnerabilities that are defined as applicable for that device
and that should therefore have been tested and collected.

3) A defect is any vulnerability for a device from the desired state that was not tested and
collected in the actual state. The defects may be of two types:

a. The collection system does not test and collect data for the defect on any applicable
device; or

b. The collection system only tests and collects data for the defect on some of the
applicable devices.

Notes on root cause:

• Item 3a) is usually a systematic error of the collection system.
• Item 3b) may be a related to the interaction of the device and the collection system;

either the device or the collection system may be the root cause.

Yes

Example Responses:

Defect Check ID Potential Response Action Primary Responsibility
VUL-Q02 Restore defect check reporting ISCM-Ops
VUL-Q02 Accept risk RskEx
VUL-Q02 Oversee and coordinate response RskEx

NISTIR 8011 VOL. 4 DATA QUALITY DEFECT CHECKS AUTOMATION SUPPORT FOR
 SECURITY CONTROL ASSESSMENTS: VUL

41

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

Supporting Control Items:
Defect Check ID Baseline NIST SP 800-53

Control Item Code
VUL-Q02 Low RA-5(a)
VUL-Q02 Low RA-5(b)
VUL-Q02 Low RA-5(c)
VUL-Q02 Low SI-2(a)
VUL-Q02 Low SI-2(b)
VUL-Q02 Moderate RA-5(1)
VUL-Q02 Moderate RA-5(2)
VUL-Q02 High SI-2(1)

NISTIR 8011 VOL. 4 DATA QUALITY DEFECT CHECKS AUTOMATION SUPPORT FOR
 SECURITY CONTROL ASSESSMENTS: VUL

42

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

3.2.2.3 Ensure Overall Defect Check Reporting Completeness Sub-Capability and Defect Check VUL-Q03

The purpose of this sub-capability is defined as follows:

Sub-Capability Name Sub-Capability Purpose
Ensure overall defect check reporting
completeness

Ensure that data for as many defect checks as possible are correctly reported in the actual state
inventory to prevent defects from going undetected.

The defect check to assess whether this sub-capability is operating effectively is defined as follows:

Defect Check ID Defect Check
Name Assessment Criteria Notes Selected

VUL-Q03 Low
completeness-

metric

The completeness metric is not a device-level defect but is applied to any collection of
devices such as those in an authorization boundary. The completeness metric is used in
assessing the trustworthiness of the collection system.

1) The actual state is the number of specified defect checks provided by the collection

system in a reporting window.
Note: A specific check-device combination may only be counted once in the required
minimal reporting period. For example, if checks are to be done every three days, a
check done twice in that timeframe would still count as one check. However, if there
are 30 days in the reporting window, that check-device combination could be counted
for each of the 10 three-day periods included.

2) The desired state is the number of specified defect checks that should have been
provided in that same reporting window.

Note: Different devices may have different sets of specified checks based on device
function/type. The desired state in this example includes 10 instances of each
specified defect check combinations for each of the three-day reporting cycles in a
30-day reporting window.

3) The metric is completeness, defined as the actual state number divided by the desired
state number. Completeness is the percentage of specified defect checks collected
during the reporting window. Completeness measures long-term ability to collect all
needed data.

4) A defect is when completeness is too low (based on the defined threshold). When
completeness is low, the risk of defects being undetected increases. An acceptable level
of completeness balances technical feasibility against the need for 100 % completeness.

Yes

NISTIR 8011 VOL. 4 DATA QUALITY DEFECT CHECKS AUTOMATION SUPPORT FOR
 SECURITY CONTROL ASSESSMENTS: VUL

43

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

Example Responses:

Defect Check ID Potential Response Action Primary Responsibility
VUL-Q03 Restore completeness ISCM-Ops
VUL-Q03 Accept risk RskEx
VUL-Q03 Oversee and coordinate response RskEx

Supporting Control Items:

Defect Check ID Baseline NIST SP 800-53
Control Item Code

VUL-Q03 Low RA-5(a)
VUL-Q03 Low RA-5(c)
VUL-Q03 Low SI-2(a)
VUL-Q03 Low SI-2(b)
VUL-Q03 Moderate SI-2(2)
VUL-Q03 High SI-2(1)

NISTIR 8011 VOL. 4 DATA QUALITY DEFECT CHECKS AUTOMATION SUPPORT FOR
 SECURITY CONTROL ASSESSMENTS: VUL

44

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

3.2.2.4 Ensure Overall Reporting Timeliness Sub-Capability and Defect Check VUL-Q04

The purpose of this sub-capability is defined as follows:

Sub-Capability Name Sub-Capability Purpose
Ensure overall reporting timeliness Ensure that data for as many defect checks as possible are reported in a timely manner in the actual state

to limit delays in defect detection. To be effective, defects need to be found and mitigated considerably
faster than they can be exploited.

The defect check to assess whether this sub-capability is operating effectively is defined as follows:

Defect Check ID Defect Check Name Assessment Criteria Notes Selected
VUL-Q04 Poor timeliness

metric
The timeliness metric is not a device-level defect but can be applied to any collection of devices
such as those within an authorization boundary. It is used in assessing the accuracy of the
collection system.

1) The actual state is the number of specified defect checks provided by the collection system

in one collection cycle—the period in which each defect should be checked once.
Note: A specific check-device combination is only counted once per collection cycle.

2) The desired state is the number of specified defect checks that should have been provided
by the collection system in one collection cycle.

Note: Different devices may have different sets of specified checks based on device
function/type.

3) The metric is timeliness, defined as the actual state number divided by the desired state
number. Timeliness is the percentage of specified defect checks actually collected in the
reporting cycle. Timeliness measures the percentage of data that is collected as recently as
required.

4) A defect is when timeliness is too poor (based on the defined threshold). When timeliness
is poor the risk of undetected defects increases.

Yes

NISTIR 8011 VOL. 4 DATA QUALITY DEFECT CHECKS AUTOMATION SUPPORT FOR
 SECURITY CONTROL ASSESSMENTS: VUL

45

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

Example Responses:

Defect Check ID Potential Response Action Primary Responsibility
VUL-Q04 Restore frequency ISCM-Ops
VUL-Q04 Accept risk RskEx
VUL-Q04 Oversee and coordinate response RskEx

Supporting Control Items:

Defect Check ID Baseline NIST SP 800-53
Control Item Code

VUL-Q04 Low RA-5(a)
VUL-Q04 Low RA-5(b)
VUL-Q04 Low RA-5(c)
VUL-Q04 Low SI-2(a)
VUL-Q04 Low SI-2(b)
VUL-Q04 Low SI-2(c)
VUL-Q04 Moderate SI-2(2)
VUL-Q04 High SI-2(1)

NISTIR 8011 VOL. 4 LOCAL DEFECT CHECKS AUTOMATION SUPPORT FOR
 SECURITY CONTROL ASSESSMENTS: VUL

46

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

3.2.3 Local Sub-Capabilities and Corresponding Defect Checks

This section includes one local defect check, VUL-L01, as an example of what organizations
may add to the foundational check to support more complete automated assessment of NIST SP
800-53 controls that support VUL.

Organizations exercise authority to manage risk by choosing whether to select specific defect
checks for implementation. In general, selecting more defect checks may lower risk (if there is
capacity to address the defects found) and provide greater assurance but may also increase the
cost of detection and mitigation. The organization selects defect checks for implementation (or
not) to balance benefits and costs and prioritize risk response actions by focusing first on the
problems that pose the greatest risk (i.e., manage risk).

Note that a local defect check may also include options to make the defect check more or less
rigorous as the risk tolerance of the organization and impact level of the system indicates.

The “Selected” column is present to indicate which of the local defect checks the organization
chooses to implement as documented or as modified by the organization.

NISTIR 8011 VOL. 4 LOCAL DEFECT CHECKS AUTOMATION SUPPORT FOR
 SECURITY CONTROL ASSESSMENTS: VUL

47

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

3.2.3.1 Reduce Poor Coding Practices Sub-Capability and Defect Check VUL-L01

The purpose of this sub-capability is defined as follows:

Sub-Capability Name Sub-Capability Purpose
Reduce poor coding practices Reduce the presence of poor software coding practices (CWEs) listed in the reference https://cwe.mitre.org.

The defect check to assess whether this sub-capability is operating effectively is defined as follows:

Defect Check ID
Defect
Check
Name

Assessment Criteria Notes Selected

VUL-L01 Poor
coding

practices

The assessment for poor coding practices applies to any software for which the organization is
responsible for finding—and developing patches to correct—poor coding practices. The
assessment for poor coding practices may also be applied to COTS and/or GOTS software to
verify results obtained from the software provider.

1) The actual state is the list (inventory) of software products and associated version, release

and patch levels present on the device to which CWE code analysis is applied.
Note: The inventory list of software files originates with the SWAM capability. The
inventory list of hardware devices originates with the HWAM capability.

2) The desired state specification is to have minimal (i.e., acceptable) risk present from
instances of CWEs in the software files on the device.

3) A defect is the presence of an unacceptable coding practice (CWE) on a device in the
actual state.

Note: Because code analyzers may produce a non-negligible number of false positives,
it is important that false positives be identified by an independent risk assessment
function (e.g., independent verification and validation team; assessment team; system
security officer; organizational risk executives) and removed from the poor coding
practice instance list.

To be determined
(TBD) by

organization

https://cwe.mitre.org/

NISTIR 8011 VOL. 4 LOCAL DEFECT CHECKS AUTOMATION SUPPORT FOR
 SECURITY CONTROL ASSESSMENTS: VUL

48

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

Example Responses:

Defect Check ID Potential Response Action Primary Responsibility
VUL-L01 Assess as false positive RskEx
VUL-L01 Remove the software PatMan
VUL-L01 Obtain patch SWFM
VUL-L01 Patch the software PatMan
VUL-L01 Apply workaround mitigation PatMan
VUL-L01 Accept risk RskEx
VUL-L01 Oversee and coordinate response DSM

Supporting Control Items:

Defect Check ID Baseline NIST SP 800-53
Control Item Code

VUL-L01 Low RA-5(a)
VUL-L01 Low RA-5(c)
VUL-L01 Low RA-5(d)
VUL-L01 Low RA-5(e)
VUL-L01 Low SI-2(a)
VUL-L01 Low SI-2(c)
VUL-L01 Low SI-2(d)
VUL-L01 Moderate SA-11(d)
VUL-L01 High SI-2(1)

NISTIR 8011 VOL. 4 LOCAL DEFECT CHECKS AUTOMATION SUPPORT FOR
 SECURITY CONTROL ASSESSMENTS: VUL

49

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

3.2.4 Security Impact of Each Sub-Capability on an Attack Step Model

Table 6 shows the primary ways the defect checks derived from the NIST SP 800-53 security controls contribute to blocking
attacks/events as described in Figure 1. Note: certain cells in Table 6 may contain repeated information from other cells. This is by
design, and due to the automated nature of the NISTIR 8011 development.

Table 6: Mapping of Attack Steps to Security Sub-Capability

Attack Step Attack Step Description Sub-Capability ID
and Name Sub-Capability Purpose

2) Initiate Attack
Internally

The attacker is inside the boundary and
initiates an attack on some assessment
object internally.

Examples include: user opens spear
phishing email or clicks on attachment;
user installs unauthorized software or
hardware; unauthorized personnel gain
physical access to restricted facility and
perform a malicious act.

VUL-F01: Reduce
software

vulnerabilities

Reduce the presence of software vulnerabilities (CVEs)
listed in the reference defect list (e.g., National
Vulnerability Database [NVD]).

2) Initiate Attack
Internally

The attacker is inside the boundary and
initiates an attack on some assessment
object internally.

Examples include: user opens spear
phishing email or clicks on attachment;
user installs unauthorized software or
hardware; unauthorized personnel gain
physical access to a restricted facility and
perform a malicious act.

VUL-L01: Reduce
poor coding practices

Reduce the presence of poor software coding practices
(CWEs) listed in the reference https://cwe.mitre.org.

https://cwe.mitre.org/

NISTIR 8011 VOL. 4 LOCAL DEFECT CHECKS AUTOMATION SUPPORT FOR
 SECURITY CONTROL ASSESSMENTS: VUL

50

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

Attack Step Attack Step Description Sub-Capability ID
and Name Sub-Capability Purpose

5) Expand Control -
Escalate or
Propagate

The attacker has persistence on the object
and seeks to expand control by escalation
of privileges on the object or propagation
to another object.

Examples include: administrator privileges
hijacked or stolen; administrator’s
password used by unauthorized party;
secure configuration is changed and/or
audit function is disabled; authorized users
access resources they do not need to
perform job; process or program that runs
as root compromised or hijacked;
cascading failures take down entire
communications infrastructure.

VUL-F01: Reduce
software

vulnerabilities

Reduce the presence of software vulnerabilities (CVEs)
listed in the reference defect list (e.g., National
Vulnerability Database [NVD]).

5) Expand Control -
Escalate or
Propagate

The attacker has persistence on the object
and seeks to expand control by escalation
of privileges on the object or propagation
to another object.

Examples include: administrator privileges
hijacked or stolen; administrator’s
password used by unauthorized party;
secure configuration is changed and/or
audit function is disabled; authorized users
access resources they do not need to
perform job; process or program that runs
as root compromised or hijacked;
cascading failures take down entire
communications infrastructure.

VUL-L01: Reduce
poor coding practices

Reduce the presence of poor software coding practices
(CWEs) listed in the reference https://cwe.mitre.org.

https://cwe.mitre.org/

NISTIR 8011 VOL. 4 AUTOMATION SUPPORT FOR
SECURITY CONTROL ASSESSMENTS: VUL

51

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

3.3 VUL Control (Item) Security Assessment Plan Narrative Tables and Templates

The security assessment plan narratives in this section are designed to provide the core of an
assessment plan for the automated assessment as described in Section 6 of Volume 1 of this
NISTIR. The narratives are supplemented by the other material in this section, including defect
check tables (defining the tests to be used), and are summarized in the Control Allocation Tables
in Section 3.4.

The roles referenced in the narratives match the roles defined by NIST in relevant special
publications (e.g., NIST SP 800-37) and/or the VUL-specific roles defined in Section 2.7. The
roles can be adapted and/or customized to the organization as described in the introduction to
Section 3.

The determination statements listed here have been derived from the relevant control item
language, specifically modified by the following three adjustments:

1. The limiting or scoping phrase {…software…} (possibly along with additional
information within the brackets as appropriate) is inserted in determination statements
where necessary for control items that apply to more capability areas than just VUL. The
limiting phrase tailors the control item to remain within VUL since the same control item
could appear in other capabilities with the relevant scoping for that capability. For
example, using the limiting phrase {…software…} is appropriate where the control could
apply to vulnerabilities in both software and hardware.

2. Where a control item includes inherently different actions that are best assessed by
different defect checks (typically because the assessment criteria are different), the
control item may be divided into multiple VUL-applicable determination statements.

3. Part of a control item may not apply to VUL while another part does. For example,
consider the control item RA-5(b): the control text lists actions that do not necessarily
apply to VUL capability, such as ensuring that scanning tools use standards for
enumerating platforms (applies to the HWAM and SWAM capabilities) and assessing
improper configurations not related to vulnerabilities (applies to the CSM capability).

RA-5 VULNERABILITY SCANNING: …Employs vulnerability scanning tools
and techniques that facilitate interoperability among tools and automate parts of
the vulnerability management process by using standards for: 1) Enumerating
platforms, software flaws, and improper configurations; 2) Formatting
checklists and test procedures; and 3) Measuring vulnerability impact…
[Emphasis added.]

To address the issue of multi-capability control items, the determination statements in this
volume include only the portion of the control item applicable to the VUL capability.

NISTIR 8011 VOL. 4 AUTOMATION SUPPORT FOR
SECURITY CONTROL ASSESSMENTS: VUL

52

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

3.3.1 Outline Followed for Each Control Item

The literal text of the control item follows the heading Control Item Text.

There may be one or more determination statements for each control item. Each determination
statement is documented in a table, noting the:

• Determination statement ID (Control Item ID concatenated with the determination
statement number, where determination statement number is enclosed in curly brackets);

• Determination statement text;
• Implemented by (responsibility);
• Assessment boundary;
• Assessment responsibility;
• Assessment method;
• Selected column (TBD by the organization);
• Rationale for risk acceptance (thresholds) (TBD by the organization);
• Frequency of assessment;31 and
• Impact of not implementing the defect check (TBD by the organization).

The determination statement details are followed by a table showing the defect checks (and
related sub-capability) that might be caused to fail if the control being tested fails.

The resulting text provides a template for the organization to edit as described in Section 3.1.

3.3.2 Outline Organized by Baselines

This section includes security control items selected in the NIST SP 800-53 Low, Moderate, and
High baselines and that support the VUL capability. For convenience, the control items are
presented in three sections as follows:

1. Low Baseline Control Items (Section 3.3.3). Security control items in the low baseline,
which are required for all systems.

2. Moderate Baseline Control Items (Section 3.3.4). Security control items in the
moderate baseline, which are also required for the high baseline.

3. High Baseline Control Items (Section 3.3.5). Security control items that are required
only for the high baseline.

Table 7 illustrates the applicability of the security control items to each baseline.

31 While automated tools may be able to assess as frequently as every 3-4 days, organizations determine the appropriate
assessment frequency in accordance with the ISCM strategy.

NISTIR 8011 VOL. 4 AUTOMATION SUPPORT FOR
SECURITY CONTROL ASSESSMENTS: VUL

53

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

Table 7: Applicability of Control Items

FIPS-199a

(NIST SP 800-60)b
System Impact Level

1) Low Control Items
(Section 3.3.3)

2) Moderate Control
Items (Section 3.3.4)

3) High Control Items
(Section 3.3.5)

Low Applicable
Moderate Applicable Applicable

High Applicable Applicable Applicable
a FIPS-199 defines Low, Moderate, and High overall potential impact designations.
b See [SP800-60-v1], Section 3.2.

NISTIR 8011 VOL. 4 LOW BASELINE SECURITY CONTROL ITEM NARRATIVES AUTOMATION SUPPORT FOR
 SECURITY CONTROL ASSESSMENTS: VUL

54

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

3.3.3 Low Baseline Security Control Item Narratives

3.3.3.1 Control Item RA-5(a): VULNERABILITY SCANNING

Control Item Text

Control: The organization:

a. Scans for vulnerabilities in the information system and hosted applications [Assignment: organization-defined
frequency and/or randomly in accordance with organization-defined process] and when new vulnerabilities potentially
affecting the system/applications are identified and reported.

Determination Statement 1
Determination
Statement ID Determination Statement Text

RA-5(a){1} Determine if the organization: scans for {software} vulnerabilities in the system and hosted applications [Assignment:
organization-defined frequency and/or randomly in accordance with organization-defined process].

Roles and Assessment Methods

Determination
Statement ID

Implemented
By

Assessment
Boundary

Assessment
Responsibility

Assessment
Methods Selected

Rationale for
Risk

Acceptance
Frequency of
Assessment

Impact of Not
Implementing

RA-5(a){1} ISCM-Ops ISCM-TN ISCM-Sys Test

NISTIR 8011 VOL. 4 LOW BASELINE SECURITY CONTROL ITEM NARRATIVES AUTOMATION SUPPORT FOR
 SECURITY CONTROL ASSESSMENTS: VUL

55

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

Defect Check Rationale Table
A failure in effectiveness of this control item results in a defect in one or more of the following defect checks:

Determination
Statement ID

Defect
Check ID

Defect
Check
Name

Rationale
If an [organization-defined measure] for this defect check is above [the organization-defined

threshold], then defects in conducting scans for {software} vulnerabilities in the information
system and hosted applications [Assignment: organization-defined frequency and/or randomly

(with adequate frequency) in accordance with organization-defined process] related to this
control item might be the cause of the defect; i.e., ...

RA-5(a){1} VUL-Q04 Poor
timeliness

metric

…poor timeliness of overall ISCM reporting.

NISTIR 8011 VOL. 4 LOW BASELINE SECURITY CONTROL ITEM NARRATIVES AUTOMATION SUPPORT FOR
 SECURITY CONTROL ASSESSMENTS: VUL

56

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

3.3.3.2 Control Item RA-5(a): VULNERABILITY SCANNING

Control Item Text

Control: The organization:

a. Scans for vulnerabilities in the information system and hosted applications [Assignment: organization-defined
frequency and/or randomly in accordance with organization-defined process] and when new vulnerabilities potentially
affecting the system/applications are identified and reported

Determination Statement 1
Determination
Statement ID Determination Statement Text

RA-5(a){2} Determine if the organization: [ensures] that when new vulnerabilities potentially affecting the system/applications are identified,
they are [added to the scanning process].

Roles and Assessment Methods

Determination
Statement ID

Implemented
By

Assessment
Boundary

Assessment
Responsibility

Assessment
Methods Selected

Rationale for
Risk

Acceptance
Frequency of
Assessment

Impact of Not
Implementing

RA-5(a){2} DSM ISCM-TN ISCM-Sys Test

NISTIR 8011 VOL. 4 LOW BASELINE SECURITY CONTROL ITEM NARRATIVES AUTOMATION SUPPORT FOR
 SECURITY CONTROL ASSESSMENTS: VUL

57

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

Defect Check Rationale Table
A failure in effectiveness of this control item results in a defect in one or more of the following defect checks:

Determination
Statement ID

Defect
Check ID

Defect Check
Name

Rationale
If an [organization-defined measure] for this defect check is above [the organization-defined

threshold], then defects in ensuring that when new vulnerabilities potentially affecting the
system/applications are identified, they are [added to the scanning process] related to this

control item might be the cause of the defect; i.e., ...
RA-5(a){2} VUL-Q02 Non-reporting

applicable defect
checks

…applicable defect checks failing to report.

NISTIR 8011 VOL. 4 LOW BASELINE SECURITY CONTROL ITEM NARRATIVES AUTOMATION SUPPORT FOR
 SECURITY CONTROL ASSESSMENTS: VUL

58

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

3.3.3.3 Control Item RA-5(b): VULNERABILITY SCANNING

Control Item Text

Control: The organization:

b. Employs vulnerability scanning tools and techniques that facilitate interoperability among tools and automate parts of
the vulnerability management process by using standards for:

 1. Enumerating platforms, software flaws, and improper configurations;
 2. Formatting checklists and test procedures; and
 3. Measuring vulnerability impact.

Determination Statement 1
Determination
Statement ID Determination Statement Text

RA-5(b){1} Determine if the organization: employs vulnerability scanning tools and techniques that facilitate interoperability among tools and
automate parts of the vulnerability management process by using standards for [identifying] software flaws.

Roles and Assessment Methods

Determination
Statement ID

Implemented
By

Assessment
Boundary

Assessment
Responsibility

Assessment
Methods Selected

Rationale for
Risk

Acceptance
Frequency of
Assessment

Impact of Not
Implementing

RA-5(b){1} DSM ISCM-TN ISCM-Sys Test

NISTIR 8011 VOL. 4 LOW BASELINE SECURITY CONTROL ITEM NARRATIVES AUTOMATION SUPPORT FOR
 SECURITY CONTROL ASSESSMENTS: VUL

59

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

Defect Check Rationale Table
A failure in effectiveness of this control item results in a defect in one or more of the following defect checks:

Determination
Statement ID

Defect
Check ID

Defect Check
Name

Rationale
If an [organization-defined measure] for this defect check is above [the organization-defined
threshold], then defects in using standards for [identifying] software flaws related to this

control item might be the cause of the defect; i.e., ...
RA-5(b){1} VUL-Q02 Non-reporting

applicable defect
checks

…applicable defect checks failing to report.

Determination Statement 2
Determination
Statement ID Determination Statement Text

RA-5(b){2} Determine if the organization: employs vulnerability scanning tools and techniques that facilitate interoperability among tools and
automate parts of the vulnerability management process by using standards for formatting checklists and test procedures to
minimize false positives.

Roles and Assessment Methods

Determination
Statement ID

Implemented
By

Assessment
Boundary

Assessment
Responsibility

Assessment
Methods Selected

Rationale for
Risk

Acceptance
Frequency of
Assessment

Impact of Not
Implementing

RA-5(b){2} ISCM-Ops ISCM-TN ISCM-Sys Test

NISTIR 8011 VOL. 4 LOW BASELINE SECURITY CONTROL ITEM NARRATIVES AUTOMATION SUPPORT FOR
 SECURITY CONTROL ASSESSMENTS: VUL

60

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

Defect Check Rationale Table
A failure in effectiveness of this control item results in a defect in one or more of the following defect checks:

Determination
Statement ID

Defect
Check ID

Defect
Check Name

Rationale
If an [organization-defined measure] for this defect check is above [the organization-defined

threshold], then defects in using standards for formatting checklists and test procedures to
minimize false positives related to this control item might be the cause of the defect; i.e., ...

RA-5(b){2} VUL-F01 Vulnerable
Software

…the presence of software vulnerabilities (CVEs or equivalent).

Determination Statement 3
Determination
Statement ID Determination Statement Text

RA-5(b){3} Determine if the organization: employs vulnerability scanning tools and techniques that facilitate interoperability among tools and
automate parts of the vulnerability management process by using standards for formatting checklists and test procedures to
minimize false negatives.

Roles and Assessment Methods

Determination
Statement ID

Implemented
By

Assessment
Boundary

Assessment
Responsibility

Assessment
Methods Selected

Rationale for
Risk

Acceptance
Frequency of
Assessment

Impact of Not
Implementing

RA-5(b){3} MAN ISCM-TN MAN TBD

Defect Check Rationale Table
A failure in effectiveness of this control item results in a defect in one or more of the following defect checks:

Not applicable because tested manually.

NISTIR 8011 VOL. 4 LOW BASELINE SECURITY CONTROL ITEM NARRATIVES AUTOMATION SUPPORT FOR
 SECURITY CONTROL ASSESSMENTS: VUL

61

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

3.3.3.4 Control Item RA-5(c): VULNERABILITY SCANNING

Control Item Text

Control: The organization:

 c. Analyzes vulnerability scan reports and results from security control assessments.

Determination Statement 1
Determination
Statement ID Determination Statement Text

RA-5(c){1} Determine if the organization: analyzes vulnerability scan reports and results from security control assessments.

Roles and Assessment Methods

Determination
Statement ID

Implemented
By

Assessment
Boundary

Assessment
Responsibility

Assessment
Methods Selected

Rationale for
Risk

Acceptance
Frequency of
Assessment

Impact of Not
Implementing

RA-5(c){1} RskEx ISCM-TN ISCM-Sys Test

Defect Check Rationale Table
A failure in effectiveness of this control item results in a defect in one or more of the following defect checks:

Determination
Statement ID

Defect
Check ID Defect Check Name

Rationale
If an [organization-defined measure] for this defect check is above [the organization-defined

threshold], then defects in analyzing vulnerability scan reports and results from
security control assessments related to this control item might be the cause of the defect;

i.e., ...
RA-5(c){1} VUL-F01 Vulnerable Software …the presence of software vulnerabilities (CVEs or equivalent).
RA-5(c){1} VUL-L01 Poor coding

practices
…the presence of software with poor coding practices (CWEs or equivalent).

RA-5(c){1} VUL-Q01 Non-reporting
devices

…a device failing to report software vulnerabilities within the specified time frame.

NISTIR 8011 VOL. 4 LOW BASELINE SECURITY CONTROL ITEM NARRATIVES AUTOMATION SUPPORT FOR
 SECURITY CONTROL ASSESSMENTS: VUL

62

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

Determination
Statement ID

Defect
Check ID Defect Check Name

Rationale
If an [organization-defined measure] for this defect check is above [the organization-defined

threshold], then defects in analyzing vulnerability scan reports and results from
security control assessments related to this control item might be the cause of the defect;

i.e., ...
RA-5(c){1} VUL-Q02 Non-reporting

applicable defect
checks

…applicable defect checks failing to report.

RA-5(c){1} VUL-Q03 Low completeness
metric

…completeness of overall ISCM reporting not meeting the threshold.

RA-5(c){1} VUL-Q04 Poor timeliness
metric

…poor timeliness of overall ISCM reporting.

NISTIR 8011 VOL. 4 LOW BASELINE SECURITY CONTROL ITEM NARRATIVES AUTOMATION SUPPORT FOR
 SECURITY CONTROL ASSESSMENTS: VUL

63

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

3.3.3.5 Control Item RA-5(d): VULNERABILITY SCANNING

Control Item Text

Control: The organization:

d. Remediates legitimate vulnerabilities [Assignment: organization-defined response times] in accordance with an
organizational assessment of risk

Determination Statement 1
Determination
Statement ID Determination Statement Text

RA-5(d){1} Determine if the organization: remediates legitimate vulnerabilities [Assignment: organization-defined response times] in
accordance with an organizational assessment of risk.

Roles and Assessment Methods

Determination
Statement ID

Implemented
By

Assessment
Boundary

Assessment
Responsibility

Assessment
Methods Selected

Rationale for
Risk

Acceptance
Frequency of
Assessment

Impact of Not
Implementing

RA-5(d){1} PatMan ISCM-TN ISCM-Sys Test

Defect Check Rationale Table
A failure in effectiveness of this control item results in a defect in one or more of the following defect checks:

Determination
Statement ID

Defect Check
ID

Defect Check
Name

Rationale
If an [organization-defined measure] for this defect check is above [the organization-defined

threshold], then defects in remediating legitimate vulnerabilities related to this control item
might be the cause of the defect; i.e., ...

RA-5(d){1} VUL-F01 Vulnerable
Software

…the presence of software vulnerabilities (CVEs or equivalent).

RA-5(d){1} VUL-L01 Poor coding
practices

…the presence of software with poor coding practices (CWEs or equivalent).

NISTIR 8011 VOL. 4 LOW BASELINE SECURITY CONTROL ITEM NARRATIVES AUTOMATION SUPPORT FOR
 SECURITY CONTROL ASSESSMENTS: VUL

64

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

3.3.3.6 Control Item RA-5(e): VULNERABILITY SCANNING

Control Item Text

Control: The organization:

e. Shares information obtained from the vulnerability scanning process and security control assessments with
[Assignment: organization-defined personnel or roles] to help eliminate similar vulnerabilities in other information
systems (i.e., systemic weaknesses or deficiencies).

Determination Statement 1
Determination
Statement ID Determination Statement Text

RA-5(e){1} Determine if the organization: shares information obtained from the vulnerability scanning process with [Assignment:
organization-defined personnel or roles] to help eliminate similar vulnerabilities in other systems (i.e., systemic weaknesses or
deficiencies).

Roles and Assessment Methods

Determination
Statement ID

Implemented
By

Assessment
Boundary

Assessment
Responsibility

Assessment
Methods Selected

Rationale for
Risk

Acceptance
Frequency of
Assessment

Impact of Not
Implementing

RA-5(e){1} RskEx ISCM-TN ISCM-Sys Test

NISTIR 8011 VOL. 4 LOW BASELINE SECURITY CONTROL ITEM NARRATIVES AUTOMATION SUPPORT FOR
 SECURITY CONTROL ASSESSMENTS: VUL

65

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

Defect Check Rationale Table
A failure in effectiveness of this control item results in a defect in one or more of the following defect checks:

Determination
Statement ID

Defect
Check ID32

Defect
Check Name

Rationale
If an [organization-defined measure] for this defect check is above [the organization-defined

threshold], then defects in sharing information obtained from the vulnerability scanning process
with [Assignment: organization-defined personnel or roles] to help eliminate similar

vulnerabilities in other information systems related to this control item might be the cause of the
defect; i.e., ...

RA-5(e){1} VUL-F01 Vulnerable
Software

…the presence of software vulnerabilities (CVEs or equivalent).

RA-5(e){1} VUL-L01 Poor coding
practices

…the presence of software with poor coding practices (CWEs or equivalent).

32 As written, defect checks VUL-F01 and VUL-L01 assume that there is an automated dashboard to which personnel or roles designated for sharing vulnerability scanning
information already have access. To be more thorough, the organization could verify that: 1) the dashboard displays scan results, 2) the organization-defined personnel or roles have
access, and/or 3) the organization-defined personnel or roles are using the access. Such verifications could be done either manually or through automation, in each case by
comparing what is desired (sharing information on vulnerability scan results with the organization-defined personnel or roles) to what is observed (whether the information is
actually shared and reviewed by defined personnel or roles).

NISTIR 8011 VOL. 4 LOW BASELINE SECURITY CONTROL ITEM NARRATIVES AUTOMATION SUPPORT FOR
 SECURITY CONTROL ASSESSMENTS: VUL

66

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

3.3.3.7 Control Item SI-2(a): FLAW REMEDIATION

Control Item Text

Control: The organization:

 a. Identifies, reports, and corrects information system flaws

Determination Statement 1
Determination
Statement ID Determination Statement Text

SI-2(a){1} Determine if the organization: identifies and reports system flaws.

Roles and Assessment Methods

Determination
Statement ID

Implemented
By

Assessment
Boundary

Assessment
Responsibility

Assessment
Methods Selected

Rationale for
Risk

Acceptance
Frequency of
Assessment

Impact of Not
Implementing

SI-2(a){1} SWFM ISCM-TN ISCM-Ops Test

Defect Check Rationale Table
A failure in effectiveness of this control item results in a defect in one or more of the following defect checks:

Determination
Statement ID

Defect
Check ID Defect Check Name

Rationale
If an [organization-defined measure] for this defect check is above [the organization-

defined threshold], then defects in identifying and reporting information system flaws
related to this control item might be the cause of the defect; i.e., ...

SI-2(a){1} VUL-Q01 Non-reporting devices …a device failing to report software vulnerabilities within the specified time frame
SI-2(a){1} VUL-Q02 Non-reporting

applicable defect
checks

…applicable defect checks failing to report

SI-2(a){1} VUL-Q03 Low completeness
metric

…completeness of overall ISCM reporting not meeting the threshold

SI-2(a){1} VUL-Q04 Poor timeliness metric …poor timeliness of overall ISCM reporting

NISTIR 8011 VOL. 4 LOW BASELINE SECURITY CONTROL ITEM NARRATIVES AUTOMATION SUPPORT FOR
 SECURITY CONTROL ASSESSMENTS: VUL

67

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

Determination Statement 2
Determination
Statement ID Determination Statement Text

SI-2(a){2} Determine if the organization: corrects system flaws.

Roles and Assessment Methods

Determination
Statement ID

Implemented
By

Assessment
Boundary

Assessment
Responsibility

Assessment
Methods Selected

Rationale for
Risk

Acceptance
Frequency of
Assessment

Impact of Not
Implementing

SI-2(a){2} PatMan ISCM-TN ISCM-Sys Test

Defect Check Rationale Table
A failure in effectiveness of this control item results in a defect in one or more of the following defect checks:

Determination
Statement ID

Defect Check
ID

Defect Check
Name

Rationale
If an [organization-defined measure] for this defect check is above [the organization-defined
threshold], then defects in correcting information system flaws related to this control item

might be the cause of the defect; i.e., ...
SI-2(a){2} VUL-F01 Vulnerable

Software
…the presence of software vulnerabilities (CVEs or equivalent).

SI-2(a){2} VUL-L01 Poor coding
practices

…the presence of software with poor coding practices (CWEs or equivalent).

NISTIR 8011 VOL. 4 LOW BASELINE SECURITY CONTROL ITEM NARRATIVES AUTOMATION SUPPORT FOR
 SECURITY CONTROL ASSESSMENTS: VUL

68

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

3.3.3.8 Control Item SI-2(b): FLAW REMEDIATION

Control Item Text

Control: The organization:

b. Tests software and firmware updates related to flaw remediation for effectiveness and potential side effects before
installation

Determination Statement 1
Determination
Statement ID Determination Statement Text

SI-2(b){1} Determine if the organization: tests software and firmware updates related to flaw remediation for effectiveness and potential
side effects before installation.

Roles and Assessment Methods

Determination
Statement ID

Implemented
By

Assessment
Boundary

Assessment
Responsibility

Assessment
Methods Selected

Rationale for
Risk

Acceptance
Frequency of
Assessment

Impact of Not
Implementing

SI-2(b){1} MAN ISCM-TN MAN TBD

Defect Check Rationale Table
A failure in effectiveness of this control item results in a defect in one or more of the following defect checks:

Not applicable because tested manually.

NISTIR 8011 VOL. 4 LOW BASELINE SECURITY CONTROL ITEM NARRATIVES AUTOMATION SUPPORT FOR
 SECURITY CONTROL ASSESSMENTS: VUL

69

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

3.3.3.9 Control Item SI-2(c): FLAW REMEDIATION

Control Item Text

Control: The organization:

c. Installs security-relevant software and firmware updates within [Assignment: organization-defined time period] of the
release of the updates

Determination Statement 1
Determination
Statement ID Determination Statement Text

SI-2(c){1} Determine if the organization: installs security-relevant software and firmware updates within [Assignment: organization-defined
time period] of the release of the updates.

Roles and Assessment Methods

Determination
Statement ID

Implemented
By

Assessment
Boundary

Assessment
Responsibility

Assessment
Methods Selected

Rationale for
Risk

Acceptance
Frequency of
Assessment

Impact of Not
Implementing

SI-2(c){1} PatMan ISCM-TN ISCM-Sys Test

NISTIR 8011 VOL. 4 LOW BASELINE SECURITY CONTROL ITEM NARRATIVES AUTOMATION SUPPORT FOR
 SECURITY CONTROL ASSESSMENTS: VUL

70

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

Defect Check Rationale Table
A failure in effectiveness of this control item results in a defect in one or more of the following defect checks:

Determination
Statement ID

Defect
Check ID

Defect
Check Name

Rationale
If an [organization-defined measure] for this defect check is above [the organization-defined

threshold], then defects in installing security-relevant software and firmware updates within
[Assignment: organization-defined time period] of the release of the updates related to this

control item might be the cause of the defect; i.e., ...
SI-2(c){1} VUL-F01 Vulnerable

Software
…the presence of software vulnerabilities (CVEs or equivalent).

SI-2(c){1} VUL-L01 Poor coding
practices

…the presence of software with poor coding practices (CWEs or equivalent).

SI-2(c){1} VUL-Q04 Poor
timeliness

metric

…poor timeliness of overall ISCM reporting.

NISTIR 8011 VOL. 4 LOW BASELINE SECURITY CONTROL ITEM NARRATIVES AUTOMATION SUPPORT FOR
 SECURITY CONTROL ASSESSMENTS: VUL

71

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

3.3.3.10 Control Item SI-2(d): FLAW REMEDIATION

Control Item Text

Control: The organization:

 d. Incorporates flaw remediation into the organizational configuration management process

Determination Statement 1
Determination
Statement ID Determination Statement Text

SI-2(d){1} Determine if the organization: incorporates flaw remediation into the organizational configuration management process.

Roles and Assessment Methods

Determination
Statement ID

Implemented
By

Assessment
Boundary

Assessment
Responsibility

Assessment
Methods Selected

Rationale for
Risk

Acceptance
Frequency of
Assessment

Impact of Not
Implementing

SI-2(d){1} SWFM ISCM-TN ISCM-Sys Test

Defect Check Rationale Table
A failure in effectiveness of this control item results in a defect in one or more of the following defect checks:

Determination
Statement ID

Defect
Check ID

Defect
Check Name

Rationale
If an [organization-defined measure] for this defect check is above [the organization-defined

threshold], then defects in incorporating flaw remediation into the organizational configuration
management process related to this control item might be the cause of the defect; i.e., ...

SI-2(d){1} VUL-F01 Vulnerable
software

…presence of software vulnerabilities (CVEs or equivalent)

SI-2(d){1} VUL-L01 Poor coding
practices

…presence of software with poor coding practices (CWEs or equivalent)

NISTIR 8011 VOL. 4 MODERATE BASELINE SECURITY CONTROL ITEM NARRATIVES AUTOMATION SUPPORT FOR
 SECURITY CONTROL ASSESSMENTS: VUL

72

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

3.3.4 Moderate Baseline Security Control Item Narratives

3.3.4.1 Control Item RA-5(1): VULNERABILITY SCANNING | UPDATE TOOL CAPABILITY

Control Item Text
The organization employs vulnerability scanning tools that include the capability to readily update the information system
vulnerabilities to be scanned.

Determination Statement 1
Determination
Statement ID Determination Statement Text

RA-5(1){1} Determine if the organization: employs vulnerability scanning tools to actually update the system vulnerabilities to be
scanned.

Roles and Assessment Methods

Determination
Statement ID

Implemented
By

Assessment
Boundary

Assessment
Responsibility

Assessment
Methods Selected

Rationale for
Risk

Acceptance
Frequency of
Assessment

Impact of Not
Implementing

RA-5(1){1} DSM ISCM-TN ISCM-Sys Test

Defect Check Rationale Table
A failure in effectiveness of this control item results in a defect in one or more of the following defect checks:

Determination
Statement ID

Defect
Check ID

Defect Check
Name

Rationale
If an [organization-defined measure] for this defect check is above [the organization-defined

threshold], then defects in updating the information system vulnerabilities to be scanned
related to this control item might be the cause of the defect; i.e., ...

RA-5(1){1} VUL-F01 Vulnerable
Software

…the presence of software vulnerabilities (CVEs or equivalent).

RA-5(1){1} VUL-L01 Poor coding
practices

…the presence of software with poor coding practices (CWEs or equivalent).

RA-5(1){1} VUL-Q02 Non-reporting
applicable defect

checks

…applicable defect checks failing to report.

NISTIR 8011 VOL. 4 MODERATE BASELINE SECURITY CONTROL ITEM NARRATIVES AUTOMATION SUPPORT FOR
 SECURITY CONTROL ASSESSMENTS: VUL

73

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

3.3.4.2 Control Item RA-5(2): VULNERABILITY SCANNING | UPDATE BY FREQUENCY / PRIOR TO NEW SCAN / WHEN
IDENTIFIED

Control Item Text
The organization updates the information system vulnerabilities scanned [Selection (one or more): [Assignment: organization-defined
frequency]; prior to a new scan; when new vulnerabilities are identified and reported].

Determination Statement 1
Determination
Statement ID Determination Statement Text

RA-5(2){1} Determine if the organization: updates the system vulnerabilities scanned [Selection (one or more): [Assignment:
organization-defined frequency]; prior to a new scan; when new vulnerabilities are identified and reported].

Roles and Assessment Methods

Determination
Statement ID

Implemented
By

Assessment
Boundary

Assessment
Responsibility

Assessment
Methods Selected

Rationale for
Risk

Acceptance
Frequency of
Assessment

Impact of Not
Implementing

RA-5(2){1} ISCM-Ops ISCM-TN ISCM-Sys Test

Defect Check Rationale Table
A failure in effectiveness of this control item results in a defect in one or more of the following defect checks:

Determination
Statement ID

Defect Check
ID

Defect
Check
Name

Rationale
If an [organization-defined measure] for this defect check is above [the organization-defined

threshold], then defects in updating the information system vulnerabilities scanned when
new vulnerabilities are identified and reported related to this control item might be the

cause of the defect; i.e., ...
RA-5(2){1} VUL-F01 Vulnerable

Software
…the presence of software vulnerabilities (CVEs or equivalent).

RA-5(2){1} VUL-L01 Poor coding
practices

…the presence of software with poor coding practices (CWEs or equivalent).

NISTIR 8011 VOL. 4 MODERATE BASELINE SECURITY CONTROL ITEM NARRATIVES AUTOMATION SUPPORT FOR
 SECURITY CONTROL ASSESSMENTS: VUL

74

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

Determination
Statement ID

Defect Check
ID

Defect
Check
Name

Rationale
If an [organization-defined measure] for this defect check is above [the organization-defined

threshold], then defects in updating the information system vulnerabilities scanned when
new vulnerabilities are identified and reported related to this control item might be the

cause of the defect; i.e., ...
RA-5(2){1} VUL-Q02 Non-

reporting
applicable

defect
checks

…applicable defect checks failing to report.

NISTIR 8011 VOL. 4 MODERATE BASELINE SECURITY CONTROL ITEM NARRATIVES AUTOMATION SUPPORT FOR
 SECURITY CONTROL ASSESSMENTS: VUL

75

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

3.3.4.3 Control Item SA-11(d): DEVELOPER SECURITY TESTING AND EVALUATION

Control Item Text

Control: The organization requires the developer of the information system, system component, or information system service
to:

 d. Implement a verifiable flaw remediation process

Determination Statement 1
Determination
Statement ID Determination Statement Text

SA-11(d){1} Determine if the organization: requires the developer of the system, system component, or system service to implement a
verifiable flaw remediation process.

Roles and Assessment Methods

Determination
Statement ID

Implemented
By

Assessment
Boundary

Assessment
Responsibility

Assessment
Methods Selected

Rationale for
Risk

Acceptance
Frequency of
Assessment

Impact of Not
Implementing

SA-11(d){1} SWFM ISCM-TN ISCM-Sys Test

Defect Check Rationale Table
A failure in effectiveness of this control item results in a defect in one or more of the following defect checks:33

Determination
Statement ID

Defect Check
ID

Defect Check
Name

Rationale If an [organization-defined measure] for this defect check is above [the
organization-defined threshold], then defects in requiring the developer of the information
system, system component, or information system service to implement a verifiable

flaw remediation process related to this control item might be the cause of the defect; i.e., ...
SA-11(d){1} VUL-F01 Vulnerable

Software
…the presence of software vulnerabilities (CVEs or equivalent).

33 Because control item SA-11(d) is focused on the flaw remediation process of the system developer, organizations requiring additional assurance may wish to supplement the
automated assessment method test with manual assessment methods examine and interview at an organization-defined frequency.

NISTIR 8011 VOL. 4 MODERATE BASELINE SECURITY CONTROL ITEM NARRATIVES AUTOMATION SUPPORT FOR
 SECURITY CONTROL ASSESSMENTS: VUL

76

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

Determination
Statement ID

Defect Check
ID

Defect Check
Name

Rationale If an [organization-defined measure] for this defect check is above [the
organization-defined threshold], then defects in requiring the developer of the information
system, system component, or information system service to implement a verifiable

flaw remediation process related to this control item might be the cause of the defect; i.e., ...
SA-11(d){1} VUL-L01 Poor coding

practices
…the presence of software with poor coding practices (CWEs or equivalent).

NISTIR 8011 VOL. 4 MODERATE BASELINE SECURITY CONTROL ITEM NARRATIVES AUTOMATION SUPPORT FOR
 SECURITY CONTROL ASSESSMENTS: VUL

77

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

3.3.4.4 Control Item SI-2(2): FLAW REMEDIATION | AUTOMATED FLAW REMEDIATION STATUS

Control Item Text
The organization employs automated mechanisms [Assignment: organization-defined frequency] to determine the state of
information system components with regard to flaw remediation.

Determination Statement 1
Determination
Statement ID Determination Statement Text

SI-2(2){1} Determine if the organization: employs automated mechanisms [Assignment: organization-defined frequency] to determine
the state of system components with regard to flaw remediation.

Roles and Assessment Methods

Determination
Statement ID

Implemented
By

Assessment
Boundary

Assessment
Responsibility

Assessment
Methods Selected

Rationale for
Risk

Acceptance
Frequency of
Assessment

Impact of Not
Implementing

SI-2(2){1} ISCM-Ops ISCM-TN ISCM-Sys Test

Defect Check Rationale Table
A failure in effectiveness of this control item results in a defect in one or more of the following defect checks:

Determination
Statement ID Defect Check ID Defect Check Name

Rationale
If an [organization-defined measure] for this defect check is above [the
organization-defined threshold], then defects in employing automated

mechanisms [Assignment: organization-defined frequency] to determine the
state of information system components with regard to flaw remediation

related to this control item might be the cause of the defect; i.e., ...
SI-2(2){1} VUL-F01 Vulnerable Software …the presence of software vulnerabilities (CVEs or equivalent)
SI-2(2){1} VUL-L01 Poor coding

practices
…the presence of software with poor coding practices (CWEs or equivalent)

SI-2(2){1} VUL-Q03 Low completeness
metric

…completeness of overall ISCM reporting not meeting the threshold

SI-2(2){1} VUL-Q04 Poor timeliness
metric

…poor timeliness of overall ISCM reporting

NISTIR 8011 VOL. 4 HIGH BASELINE SECURITY CONTROL ITEM NARRATIVES AUTOMATION SUPPORT FOR
 SECURITY CONTROL ASSESSMENTS: VUL

78

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

3.3.5 High Baseline Security Control Item Narratives

3.3.5.1 Control Item SI-2(2): FLAW REMEDIATION | AUTOMATED FLAW REMEDIATION STATUS

Control Item Text
The organization centrally manages the flaw remediation process.

Determination Statement 1
Determination
Statement ID Determination Statement Text

SI-2(1){1} Determine if the organization: centrally manages the flaw remediation process.

Roles and Assessment Methods

Determination
Statement ID

Implemented
By

Assessment
Boundary

Assessment
Responsibility

Assessment
Methods Selected

Rationale for
Risk

Acceptance
Frequency of
Assessment

Impact of Not
Implementing

SI-2(1){1} SWFM ISCM-TN ISCM-Sys Test

Defect Check Rationale Table
A failure in effectiveness of this control item results in a defect in one or more of the following defect checks:

Determination
Statement ID

Defect
Check ID

Defect Check
Name

Rationale
If an [organization-defined measure] for this defect check is above [the organization-

defined threshold], then defects in centrally managing the flaw remediation process
related to this control item might be the cause of the defect; i.e., ...

SI-2(1){1} VUL-F01 Vulnerable
Software

…the presence of software vulnerabilities (CVEs or equivalent).

SI-2(1){1} VUL-L01 Poor coding
practices

…the presence of software with poor coding practices (CWEs or equivalent).

SI-2(1){1} VUL-Q01 Non-reporting
devices

…a device failing to report software vulnerabilities within the specified time frame.

SI-2(1){1} VUL-Q02 Non-reporting
applicable defect

checks

…applicable defect checks failing to report.

NISTIR 8011 VOL. 4 HIGH BASELINE SECURITY CONTROL ITEM NARRATIVES AUTOMATION SUPPORT FOR
 SECURITY CONTROL ASSESSMENTS: VUL

79

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

Determination
Statement ID

Defect
Check ID

Defect Check
Name

Rationale
If an [organization-defined measure] for this defect check is above [the organization-

defined threshold], then defects in centrally managing the flaw remediation process
related to this control item might be the cause of the defect; i.e., ...

SI-2(1){1} VUL-Q03 Low completeness
metric

…completeness of overall ISCM reporting not meeting the threshold.

SI-2(1){1} VUL-Q04 Poor timeliness
metric

…poor timeliness of overall ISCM reporting.

NISTIR 8011 VOL. 4 AUTOMATION SUPPORT FOR
SECURITY CONTROL ASSESSMENTS: VUL

80

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

3.4 Control Allocation Tables (CATs)

Table 8: Low Baseline Control (Item) Allocation Table, Table 9: Moderate Baseline Control
(Item) Allocation Table, and Table 10: High Baseline Control (Item) Allocation Table provide
the low, moderate, and high baseline control allocation tables, respectively. The following is a
summary of the material in the security plan assessment narrative for each determination
statement in Section 3.3. It provides a concise summary of the assessment plan.

NISTIR 8011 VOL. 4 AUTOMATION SUPPORT FOR
SECURITY CONTROL ASSESSMENTS: VUL

81

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

3.4.1 Low Baseline Control Allocation Table

Table 8: Low Baseline Control (Item) Allocation Table

Determination
Statement ID Implemented By Assessment

Boundary
Assessment

Responsibility
Assessment

Methods Selected Rationale for Risk
Acceptance

Frequency
of

Assessment
Impact of Not
Implementing

RA-5(a){1} ISCM-Ops ISCM-TN ISCM-Sys Test
RA-5(a){2} DSM ISCM-TN ISCM-Sys Test
RA-5(b){1} DSM ISCM-TN ISCM-Sys Test
RA-5(b){2} ISCM-Ops ISCM-TN ISCM-Sys Test
RA-5(b){3} MAN ISCM-TN MAN TBD
RA-5(c){1} RskEx ISCM-TN ISCM-Sys Test
RA-5(d){1} PatMan ISCM-TN ISCM-Sys Test
RA-5(e){1} RskEx ISCM-TN ISCM-Sys Test
SI-2(a){1} SWFM ISCM-TN ISCM-Ops Test
SI-2(a){2} PatMan ISCM-TN ISCM-Sys Test
SI-2(b){1} MAN ISCM-TN MAN TBD
SI-2(c){1} PatMan ISCM-TN ISCM-Sys Test
SI-2(d){1} SWFM ISCM-TN ISCM-Sys Test

NISTIR 8011 VOL. 4 AUTOMATION SUPPORT FOR
SECURITY CONTROL ASSESSMENTS: VUL

82

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

3.4.2 Moderate Baseline Control Allocation Table

Table 9: Moderate Baseline Control (Item) Allocation Table

Determination
Statement ID Implemented By Assessment

Boundary
Assessment

Responsibility
Assessment

Methods Selected Rationale for Risk
Acceptance

Frequency
of

Assessment
Impact of Not
Implementing

RA-5(1){1} DSM ISCM-TN ISCM-Sys Test
RA-5(2){1} ISCM-Ops ISCM-TN ISCM-Sys Test
SA-11(d){1} SWFM ISCM-TN ISCM-Sys Test
SI-2(2){1} ISCM-Ops ISCM-TN ISCM-Sys Test

3.4.3 High Baseline Control Allocation Table

Table 10: High Baseline Control (Item) Allocation Table

Determination
Statement ID Implemented By Assessment

Boundary
Assessment

Responsibility
Assessment

Methods Selected Rationale for Risk
Acceptance

Frequency
of

Assessment
Impact of Not
Implementing

SI-2(1){1} SWFM ISCM-TN ISCM-Sys Test

NISTIR 8011 VOL. 4 AUTOMATION SUPPORT FOR
SECURITY CONTROL ASSESSMENTS: VUL

83

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

References

[CNA] The MITRE Corporation (2019) CVE Numbering Authorities. Available at:
https://cve.mitre.org/cve/cna.html

[CNSSI 4009] Committee on National Security Systems (2015) Committee on National
Security Systems (CNSS) Glossary. (National Security Agency, Fort George
G. Meade, MD), CNSS Instruction 4009. Available at
https://www.cnss.gov/CNSS/issuances/Instructions.cfm

[CPE] National Institute of Standards and Technology (2020) Common Platform
Enumeration. Available at: https://csrc.nist.gov/projects/security-content-
automation-protocol/specifications/cpe/

[CVE] The MITRE Corporation (2019) Common Vulnerabilities and Exposures
(CVE). Available at: https://cve.mitre.org

[CVENVD] The MITRE Corporation (2019) CVE and NVD Relationship. Available at:
https://cve.mitre.org/about/cve_and_nvd_relationship.html

[CVSS] First.org, Inc (2020) Common Vulnerability Scoring System Special Interest
Group (CVSS SIG). Available at: https://www.first.org/cvss/

[CWE] The MITRE Corporation (2019) Common Weakness Enumeration. Available
at: https://cwe.mitre.org

[FIPS199] National Institute of Standards and Technology (2004) Standards for Security
Categorization of Federal Information and Information Systems. (U.S.
Department of Commerce, Washington, DC), Federal Information Processing
Standards Publication (FIPS) 199. https://doi.org/10.6028/NIST.FIPS.199

[IR7511] Cook MR, Quinn SD, Waltermire DA, Prisaca D (2016) Security Content
Automation Protocol (SCAP) Version 1.2 Validation Program Test
Requirements. (National Institute of Standards and Technology, Gaithersburg,
MD), NIST Interagency or Internal Report (IR) 7511, Rev. 4.
https://doi.org/10.6028/NIST.IR.7511r4

[IR8011-1] Dempsey KL, Eavy P, Moore G (2017) Automation Support for Security
Control Assessments: Volume 1: Overview. (National Institute of Standards
and Technology, Gaithersburg, MD), NIST Interagency or Internal Report (IR)
8011, Vol. 1. https://doi.org/10.6028/NIST.IR.8011-1

[IR8011-3] Dempsey KL, Goren N, Eavy P, Moore G (2018) Automation Support for
Security Control Assessments: Software Asset Management. (National
Institute of Standards and Technology, Gaithersburg, MD), NIST Interagency
or Internal Report (IR) 8011, Vol. 3. https://doi.org/10.6028/NIST.IR.8011-3

[IR8060] Waltermire D., et al (2016), Guidelines for the Creation of Interoperable

https://cve.mitre.org/cve/cna.html
https://www.cnss.gov/CNSS/issuances/Instructions.cfm
https://csrc.nist.gov/projects/security-content-automation-protocol/specifications/cpe/
https://csrc.nist.gov/projects/security-content-automation-protocol/specifications/cpe/
https://cve.mitre.org/
https://cve.mitre.org/about/cve_and_nvd_relationship.html
https://www.first.org/cvss/
https://cwe.mitre.org/
https://doi.org/10.6028/NIST.FIPS.199
https://doi.org/10.6028/NIST.IR.7511r4
https://doi.org/10.6028/NIST.IR.8011-1
https://doi.org/10.6028/NIST.IR.8011-3

NISTIR 8011 VOL. 4 AUTOMATION SUPPORT FOR
SECURITY CONTROL ASSESSMENTS: VUL

84

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

Software Identification (SWID) Tags (National Institute of Standards and
Technology, Gaithersburg, MD), NIST Interagency Report (NISTIR) 8060,
https://csrc.nist.gov/publications/detail/nistir/8060/final

[NVD] National Institute of Standards and Technology (2019) National Vulnerability
Database. Available at: https://nvd.nist.gov

[SEI] Householder, A.D., Wassermann, G., Manion, A., & King, C. (2017). The
CERT Guide to Coordinated Vulnerability Disclosure. (Carnegie Mellon
University Software Engineering Institute, Pittsburgh, PA), available at:
https://resources.sei.cmu.edu/asset_files/SpecialReport/2017_003_001_503340
.pdf

[SP800-30] Joint Task Force Transformation Initiative (2012) Guide for Conducting Risk
Assessments. (National Institute of Standards and Technology, Gaithersburg,
MD), NIST Special Publication (SP) 800-30, Rev. 1.
https://doi.org/10.6028/NIST.SP.800-30r1

[SP800-37] Joint Task Force (2018) Risk Management Framework for Information
Systems and Organizations: A System Life Cycle Approach for Security and
Privacy. (National Institute of Standards and Technology, Gaithersburg, MD),
NIST Special Publication (SP) 800-37, Rev. 2.
https://doi.org/10.6028/NIST.SP.800-37r2

[SP800-39] Joint Task Force Transformation Initiative (2011) Managing Information
Security Risk: Organization, Mission, and Information System View. (National
Institute of Standards and Technology, Gaithersburg, MD), NIST Special
Publication (SP) 800-39. https://doi.org/10.6028/NIST.SP.800-39

[SP800-53] Joint Task Force Transformation Initiative (2013) Security and Privacy
Controls for Federal Information Systems and Organizations. (National
Institute of Standards and Technology, Gaithersburg, MD), NIST Special
Publication (SP) 800-53, Rev. 4, Includes updates as of January 22, 2015.
https://doi.org/10.6028/NIST.SP.800-53r4

[SP800-53A] Joint Task Force Transformation Initiative (2014) Assessing Security and
Privacy Controls in Federal Information Systems and Organizations: Building
Effective Assessment Plans. (National Institute of Standards and Technology,
Gaithersburg, MD), NIST Special Publication (SP) 800-53A, Rev. 4, Includes
updates as of December 18, 2014. https://doi.org/10.6028/NIST.SP.800-53Ar4

[SP800-60-v1] Stine KM, Kissel RL, Barker WC, Fahlsing J, Gulick J (2008) Guide for
Mapping Types of Information and Information Systems to Security
Categories. (National Institute of Standards and Technology, Gaithersburg,
MD), NIST Special Publication (SP) 800-60, Vol. 1, Rev. 1.
https://doi.org/10.6028/NIST.SP.800-60v1r1

[SP800-126] Waltermire DA, Quinn SD, Scarfone KA, Halbardier AM (2011) The

https://csrc.nist.gov/publications/detail/nistir/8060/final
https://nvd.nist.gov/
https://resources.sei.cmu.edu/asset_files/SpecialReport/2017_003_001_503340.pdf
https://resources.sei.cmu.edu/asset_files/SpecialReport/2017_003_001_503340.pdf
https://doi.org/10.6028/NIST.SP.800-30r1
https://doi.org/10.6028/NIST.SP.800-37r2
https://doi.org/10.6028/NIST.SP.800-39
https://doi.org/10.6028/NIST.SP.800-53r4
https://doi.org/10.6028/NIST.SP.800-53Ar4
https://doi.org/10.6028/NIST.SP.800-60v1r1

NISTIR 8011 VOL. 4 AUTOMATION SUPPORT FOR
SECURITY CONTROL ASSESSMENTS: VUL

85

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

Technical Specification for the Security Content Automation Protocol (SCAP):
SCAP Version 1.2. (National Institute of Standards and Technology,
Gaithersburg, MD), NIST Special Publication (SP) 800-126, Rev. 2, Includes
updates as of March 19, 2012. https://doi.org/10.6028/NIST.SP.800-126r2

[SP800-163] Ogata MA, Franklin JM, Voas JM, Sritapan V, Quirolgico S (2019) Vetting the
Security of Mobile Applications. (National Institute of Standards and
Technology, Gaithersburg, MD), NIST Special Publication (SP) 800-163, Rev.
1. https://doi.org/10.6028/NIST.SP.800-163r1

https://doi.org/10.6028/NIST.SP.800-126r2
https://doi.org/10.6028/NIST.SP.800-163r1

NISTIR 8011 VOL. 4 AUTOMATION SUPPORT FOR
SECURITY CONTROL ASSESSMENTS: VUL

86

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

Appendix A Traceability of VUL Control Items to Example Attack Steps

Note: This Appendix includes only those control items that can be assessed (at least in part) via
automation.

Example Attack Step NIST SP 800-53 Control Item Code
2) Initiate Attack Internally RA-5(b)
2) Initiate Attack Internally RA-5(c)
2) Initiate Attack Internally RA-5(d)
2) Initiate Attack Internally RA-5(e)
2) Initiate Attack Internally SA-11(d)
2) Initiate Attack Internally SI-2(a)
2) Initiate Attack Internally SI-2(c)
2) Initiate Attack Internally SI-2(d)
2) Initiate Attack Internally SI-2(1)
5) Expand Control – Escalate or Propagate RA-5(b)
5) Expand Control – Escalate or Propagate RA-5(c)
5) Expand Control – Escalate or Propagate RA-5(d)
5) Expand Control – Escalate or Propagate RA-5(e)
5) Expand Control – Escalate or Propagate SA-11(d)
5) Expand Control – Escalate or Propagate SI-2(a)
5) Expand Control – Escalate or Propagate SI-2(c)
5) Expand Control – Escalate or Propagate SI-2(d)
5) Expand Control – Escalate or Propagate SI-2(1)

NISTIR 8011 VOL. 4 AUTOMATION SUPPORT FOR
SECURITY CONTROL ASSESSMENTS: VUL

87

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

Appendix B Keyword Rules Used to Identify Controls that Support VUL

Automated keyword searches were employed to identify candidate control items in NIST SP
800-53 that might support the VUL capability. After candidate controls were returned by the
keyword searches, the language content of each control item was examined manually to separate
those that support the VUL capability (true positives) from those that do not (false positives).
The control items for the low, moderate, and high baselines are listed in Tables 8, 9, and 10,
respectively. The specific keyword rules used to identify VUL controls appear in the table below.

Keyword Rule Rationale
flaw remediation Ensuring that flaws (CWEs) are found and corrected prior to

approval and periodically thereafter
high-risk areas Ensuring that software moving to high risk areas is adequately

patched for the new location or environment
non-persisten OR *persisten* Ensuring that software is loaded from persistent and trusted

sources which have already had flaws removed and have been
patched

vulnerabil AND *scan* Ensuring that software vulnerabilities are identified and corrected

NISTIR 8011 VOL. 4 AUTOMATION SUPPORT FOR
SECURITY CONTROL ASSESSMENTS: VUL

88

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

Appendix C Control Items in the Low-High Baseline that were Selected by the Keyword
Search for Controls that Support VUL, but were Manually Determined to be False
Positives

NIST SP
800-53
Control

Item
Control Text Level Rationale for Calling a

False Positive

AU-6 (5) AUDIT REVIEW, ANALYSIS, AND REPORTING |
INTEGRATION / SCANNING AND MONITORING
CAPABILITIES
The organization integrates analysis of audit records
with analysis of [Selection (one or more): vulnerability
scanning information; performance data; information
system monitoring information; [Assignment:
organization-defined data/information collected from
other sources]] to further enhance the ability to
identify inappropriate or unusual activity.

High Relates to audit record
analysis (not the VUL
capability)

CA-2 (2) SECURITY ASSESSMENTS | SPECIALIZED
ASSESSMENTS
The organization includes, as part of security control
assessments, [Assignment: organization-defined
frequency], [Selection: announced. unannounced],
[Selection (one or more): in-depth monitoring;
vulnerability scanning; malicious user testing; insider
threat assessment; performance/load testing;
[Assignment: organization-defined other forms of
security assessment]].

High Relates to assessment
capability

RA-5 (4) VULNERABILITY SCANNING | DISCOVERABLE
INFORMATION
The organization determines what information about
the information system is discoverable by adversaries
and subsequently takes [Assignment: organization-
defined corrective actions].

High Does not relate to removing
software vulnerabilities

RA-5 (5) VULNERABILITY SCANNING | PRIVILEGED
ACCESS
The information system implements privileged access
authorization to [Assignment: organization-identified
information system components] for selected
[Assignment: organization-defined vulnerability
scanning activities].

Moderate Relates to access/trust
capability

NISTIR 8011 VOL. 4 AUTOMATION SUPPORT FOR
SECURITY CONTROL ASSESSMENTS: VUL

89

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

Appendix D Control Items Not in the Low, Moderate, or High Baselines

The following security controls/control items are not included in an NIST SP 800-53 baseline
and were therefore not analyzed further after the keyword search:

• Program Management (PM) Family because the PM controls do not apply to individual
systems

• Controls/control items selected by the VUL keywords (as specified in Appendix B) that
are not assigned to an NIST SP 800-53 baseline

• Privacy Controls.

The controls/control items matching the criteria in the bulleted list above are provided in this
appendix in case an organization wants to develop its own automated tests.

NIST SP 800-53
Control/Control Item Control Text

RA-5(3) VULNERABILITY SCANNING | BREADTH / DEPTH OF COVERAGE
The organization employs vulnerability scanning procedures that can identify
the breadth and depth of coverage (i.e., information system components
scanned and vulnerabilities checked).

RA-5(6) VULNERABILITY SCANNING | AUTOMATED TREND ANALYSES
The organization employs automated mechanisms to compare the results of
vulnerability scans over time to determine trends in information system
vulnerabilities.

RA-5(8) VULNERABILITY SCANNING | REVIEW HISTORIC AUDIT LOGS
The organization reviews historic audit logs to determine if a vulnerability
identified in the information system has been previously exploited.

RA-5(10) VULNERABILITY SCANNING | CORRELATE SCANNING INFORMATION
The organization correlates the output from vulnerability scanning tools to
determine the presence of multi-vulnerability/multi-hop attack vectors.

SC-34(1) NON-MODIFIABLE EXECUTABLE PROGRAMS | NO WRITABLE STORAGE
The organization employs [Assignment: organization-defined information
system components] with no writeable storage that is persistent across
component restart or power on/off.

NISTIR 8011 VOL. 4 AUTOMATION SUPPORT FOR
SECURITY CONTROL ASSESSMENTS: VUL

90

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

NIST SP 800-53
Control/Control Item Control Text

SI-2(3)(a) FLAW REMEDIATION | TIME TO REMEDIATE FLAWS / BENCHMARKS
FOR CORRECTIVE ACTIONS
The organization:
(a) Measures the time between flaw identification and flaw remediation.

SI-2(3)(b) FLAW REMEDIATION | TIME TO REMEDIATE FLAWS / BENCHMARKS
FOR CORRECTIVE ACTIONS
The organization:
(b) Establishes [Assignment: organization-defined benchmarks] for taking
corrective actions.

SI-2(5) FLAW REMEDIATION | AUTOMATIC SOFTWARE / FIRMWARE UPDATES
The organization installs [Assignment: organization-defined security-relevant
software and firmware updates] automatically to [Assignment: organization-
defined information system components].

SI-2(6) FLAW REMEDIATION | REMOVAL OF PREVIOUS VERSIONS OF
SOFTWARE / FIRMWARE
The organization removes [Assignment: organization-defined software and
firmware components] after updated versions have been installed.

SI-3(10)(b) MALICIOUS CODE PROTECTION | MALICIOUS CODE ANALYSIS
The organization:
(b) Incorporates the results from malicious code analysis into organizational
incident response and flaw remediation processes.

SI-14 NON-PERSISTENCE
Control: The organization implements non-persistent [Assignment:
organization-defined information system components and services] that are
initiated in a known state and terminated [Selection (one or more): upon end of
session of use; periodically at [Assignment: organization-defined frequency]].

SI-14(1) NON-PERSISTENCE | REFRESH FROM TRUSTED SOURCES
The organization ensures that software and data employed during information
system component and service refreshes are obtained from [Assignment:
organization-defined trusted sources].

NISTIR 8011 VOL. 4 AUTOMATION SUPPORT FOR
SECURITY CONTROL ASSESSMENTS: VUL

91

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

Appendix E VUL-Specific Acronyms and Abbreviations

API Application Programming Interface

CVE Common Vulnerability and Exposure

CWE Common Weakness Enumeration

SWID Tag Software Identification Tag

NISTIR 8011 VOL. 4 AUTOMATION SUPPORT FOR
SECURITY CONTROL ASSESSMENTS: VUL

92

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

Appendix F Glossary

common vulnerabilities
and exposures (CVE)
[SP800-126]

A nomenclature and dictionary of security-related software flaws.

common vulnerabilities
and exposures (CVE)
[CVENVD]

A list of entries, each containing a unique identification number, a
description, and at least one public reference—for publicly known
cybersecurity vulnerabilities [CVENVD]. This list feeds the National
Vulnerability Database (NVD).

See also: CVE equivalent.

CVE equivalent A vulnerability—known by someone—that has been found in specific
software—irrespective of whether that vulnerability is publicly known.
CVEs are a subset of CVE equivalents.

common weakness
enumeration (CWE)
[CWE]

A list of known poor coding practices that may be present in software
[CWE].

See also, weakness.

common weakness
enumeration (CWE)
[CNSSI 4009]

A taxonomy for identifying the common sources of software flaws (e.g.,
buffer overflows, failure to check input data).

dynamic code analyzer A tool that analyzes computer software by executing programs built from
the software being analyzed on a real or virtual processor and observing
its behavior, probing the application and analyzing application responses.

metacontrol A control of, or about, a control. For example, a control that specifies how
the desired or actual state data for another control is to be managed.

national vulnerability
database (NVD)
[IR7511]

The U.S. government repository of standards-based vulnerability
management data represented using the Security Content Automation
Protocol (SCAP). This data informs automation of vulnerability
management, security measurement, and compliance. NVD includes
databases of security checklists, security related software flaws,
misconfigurations, product names, and impact metrics.

package management
system

An administrative tool or utility that facilitates the installation and
maintenance of software on a given host, device or pool of centrally
managed hosts, and the reporting of installed software attributes. May also
be referred to as package manager, software manager, application
manager, or app manager.

package manifest A listing of the contents of a software package.

patch level Denotes either a patch level or a patch set. More specifically, when
patches must be applied in order, the patch level is the identifier of the
most recently applied patch.

patch set When patches do not need to be applied in any particular order, the patch
set includes all (and only) the applied patches.

NISTIR 8011 VOL. 4 AUTOMATION SUPPORT FOR
SECURITY CONTROL ASSESSMENTS: VUL

93

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

software product and
executable file version

A patch level versioning of the software product or digital fingerprint
version of a software file.

software vulnerability
[SP800-163, Adapted]

A security flaw, glitch, or weakness found in software code that could be
exploited by an attacker (threat source).

static code analyzer A tool that analyzes source code without executing the code. Static code
analyzers are designed to review bodies of source code (at the
programming language level) or compiled code (at the machine language
level) to identify poor coding practices. Static code analyzers provide
feedback to developers during the code development phase on security
flaws that might be introduced into code.

vulnerability
[CNSSI 4009]

Weakness in an information system, system security procedures, internal
controls, or implementation that could be exploited by a threat source.

vulnerability scanner (As used in this volume) A network tool (hardware and/or software) that
scans network devices to identify generally known and organization
specific CVEs. It may do this based on a wide range of signature
strategies.

vulnerability scanner A tool (hardware and/or software) used to identify hosts/host attributes and
associated vulnerabilities (CVEs, CWEs, and others).

weakness (As used in this volume) Poor coding practices, as exemplified by CWEs.

NISTIR 8011 VOL. 4 AUTOMATION SUPPORT FOR
SECURITY CONTROL ASSESSMENTS: VUL

94

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

Appendix G Control Items Affecting Desired and/or Actual State from All Defect Checks
in this Volume

This table supports:

• Identification of controls necessary to ensure that both the actual state and desired state
data are maintained under effective configuration management in order to support
complete, timely, and valid testing.

• Root cause analysis when a specific defect check fails. Such a failure might be caused not
only by a failure of the specific control items mapped to that defect check in the defect
check narratives but also by a failure in any of the listed control items.

As used here, the controls apply to potential defects in the desired state (DS) and/or actual state
(AS). The rationale column explains how a defect in the control item might cause the defect
check to fail.

For example, in the vulnerability management capability, suppose an organization has identified
a set of vulnerabilities to be checked that is recorded in both the desired state metadata and the
tool used to perform the check. The organization can then compare the desired state and the tool
used to perform the check to make sure that the vulnerability “checking process” is complete.
However, if the desired state data itself is not under effective configuration management, some
of the vulnerability checks might be removed from the desired state checking process due to an
insider threat, carelessness, or an external attack by someone who wants to exploit a particular
vulnerability. If the desired state metadata is under effective configuration management, the
disparity in the desired state can be found quickly. Otherwise, the removal of vulnerability
checks might not be discovered until root cause analysis after a successful attack (assuming the
attack is even discovered).

Note: These items are not explicitly included in the control item assessment narratives unless
they also apply to the configuration management of items other than the desired and actual
states for assessment.

NISTIR 8011 VOL. 4 AUTOMATION SUPPORT FOR
SECURITY CONTROL ASSESSMENTS: VUL

95

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

Determination
Statement ID Determination Statement Text Impact

Level
Affects DS
and/or AS Rationale

CM-2{1} Determine if the organization: develops,
documents, and maintains a current baseline
configuration of the information system under
configuration control.

Low

DS Otherwise, there is no desired state for
testing.

CM-2(1)(a){1} Determine if the organization: reviews and
updates the baseline configuration of the
information system:
(a) [Assignment: organization-defined
frequency].

Moderate

DS Otherwise, the desired state might not be
updated as needed to maintain appropriate
security.

CM-2(1)(b){1} Determine if the organization: reviews and
updates the baseline configuration of the
information system:
(b) When required due to [Assignment
organization-defined circumstances].

Moderate DS Otherwise, desired state might not be
updated based on the organization-defined
circumstances.

CM-2(1)(c){1} Determine if the organization: reviews and
updates the baseline configuration of the
information system:
(c) As an integral part of information system
component installations and upgrades.

Moderate DS Otherwise, desired state might not be
updated as appropriate when component
installations and updates occur.

CM-2(2){1} Determine if the organization: employs
automated mechanisms to maintain an up-to-
date, complete, accurate, and readily available
baseline configuration of the information
system.

High DS Otherwise, accurate testing information
might not be provided.

CM-3(a){1} Determine if the organization: employs
automated mechanisms to determine the types
of changes to the system {installed software}
that are configuration-controlled.

Moderate DS Otherwise, the desired state might not
specify all machine-readable data needed
for implemented defect checks.

CM-3(b){1} Determine if the organization: reviews
proposed configuration-controlled changes to
the {software of the} system and approves or
disapproves such changes.

Moderate DS Otherwise, the decisions on desired state
might not adequately reflect security impact
of changes.

NISTIR 8011 VOL. 4 AUTOMATION SUPPORT FOR
SECURITY CONTROL ASSESSMENTS: VUL

96

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

Determination
Statement ID Determination Statement Text Impact

Level
Affects DS
and/or AS Rationale

CM-3(b){2} Determine if the organization: explicitly
considers security impact analysis when
reviewing proposed configuration-controlled
changes to the {software of the} system.

Moderate DS Otherwise, the decisions on desired state
might not adequately reflect security impact
of changes.

CM-3(c){1} Determine if the organization: documents
configuration change decisions associated with
the system {installed software}.

Moderate DS Otherwise, changes to the desired state
specification might not be documented and
available as machine-readable data.

CM-3(d){1} Determine if the organization: implements
approved configuration-controlled changes to
the system {installed software}.

Moderate AS Otherwise, defect checks might fail
because changes were not implemented in
the actual state.

CM-3(f){1} Determine if the organization: audits activities
associated with configuration-controlled
changes to the {software of the} system.

Moderate DS Otherwise, errors in the desired state might
not be detected.

CM-3(f){2} Determine if the organization: reviews activities
associated with configuration-controlled
changes to the {software of the} system.

Moderate DS Otherwise, errors in the desired state might
not be detected.

CM-3(g){1} Determine if the organization: coordinates
configuration change control activities {of
software} through [Assignment: organization-
defined configuration change control element
(e.g., committee, board)] that convenes
[Selection (one or more): [Assignment:
organization-defined frequency]; [Assignment:
organization-defined configuration change
conditions].

Moderate DS Otherwise, the persons authorized to make
change approval decisions, and the scope
of their authority might not be clearly
defined to enable knowing what decisions
are authorized.

CM-3(g){2} Determine if the organization: provides
oversight for configuration change control
activities {of software} through [Assignment:
organization-defined configuration change
control element (e.g., committee, board)] that
convenes [Selection (one or more):
[Assignment: organization-defined frequency];
[Assignment: organization-defined
configuration change conditions].

Moderate DS Otherwise, the persons authorized to make
change approval decisions and the scope
of their authority might not be clearly
defined to enable knowing what decisions
are authorized.

NISTIR 8011 VOL. 4 AUTOMATION SUPPORT FOR
SECURITY CONTROL ASSESSMENTS: VUL

97

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

Determination
Statement ID Determination Statement Text Impact

Level
Affects DS
and/or AS Rationale

CM-3(1)(a){1} Determine if the organization: employs
automated mechanisms to document proposed
changes to the system {installed software}.

High DS Otherwise, changes to the desired state
specification might not be documented and
available for assessment.

CM-3(1)(b){1} Determine if the organization: employs
automated mechanisms to notify [Assignment:
organized-defined approval authorities] of
proposed changes to the system {installed
software} and request change approval.

High DS Otherwise, needed changes might not be
reviewed in a timely manner.

CM-3(1)(c){1} Determine if the organization: employs
automated mechanisms to highlight proposed
changes to the system {installed software} that
have not been approved or disapproved by
[Assignment: organization-defined time period].

High DS Otherwise, needed changes might not be
reviewed in a timely manner.

CM-3(1)(d){1} Determine if the organization: employs
automated mechanisms to prohibit changes to
the system {installed software} until designated
approvals are received.

High DS Otherwise, unapproved changes might be
implemented.

CM-3(1)(e){1} Determine if the organization: employs
automated mechanisms to document all
changes to the system {installed software}.

High AS Otherwise, documented changes might not
reflect the actual state of the system.

CM-3(1)(f){1} Determine if the organization: employs
automated mechanisms to notify [Assignment:
organization-defined personnel] when
approved changes to the system {installed
software} are completed.

High DS Otherwise, required changes might be
missed.

CM-3(2){1} Determine if the organization: tests, validates,
and documents changes to the {software of
the} system before implementing the changes
on the operational system.
Not applicable in the operational environment.
This should be assessed via manual
reauthorization prior to placing policy in the
desired state. Because it occurs as part of
system engineering, it is outside of the scope
of this operational capability.

Moderate DS and AS Otherwise, changes might increase risk by
creating operational or security defects.

NISTIR 8011 VOL. 4 AUTOMATION SUPPORT FOR
SECURITY CONTROL ASSESSMENTS: VUL

98

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

Determination
Statement ID Determination Statement Text Impact

Level
Affects DS
and/or AS Rationale

CM-8(a){1} Determine if the organization: develops and
documents an inventory of system components
{for software} that (1) accurately reflects the
current system and (2) includes all components
within the authorization boundary of the
system.

Low DS and AS Otherwise, the desired state and actual
state inventories might have errors related
to accuracy, completeness, and/or content.

CM-8(a){2} Determine if the organization: develops and
documents an inventory of system components
{for software} that is at the level of granularity
deemed necessary for tracking and reporting
[by the organization].

Low DS and AS Otherwise, the desired state and actual
state inventories might have errors related
to level of detail.

CM-8(b){1} Determine if the organization: updates the
system component inventory {for software}
[Assignment: organization-defined frequency].

Low DS and AS Otherwise, defects in the desired state and
actual state inventories as well as related
processes, might not be detected.

CM-8(b){2} Determine if the organization: reviews the
system component inventory {for software}
[Assignment: organization-defined frequency].

Low DS and AS Otherwise, defects in the desired state and
actual state inventories as well as related
processes might not be detected.

CM-8(1){1} Determine if the organization: updates the
inventory of system {installed software}
components as an integral part of component
installations, removals, and system updates.

Moderate DS and AS Otherwise, defects in desired state and
actual state inventories as well as related
processes might not be detected.

CM-8(2){1} Determine if the organization: employs
automated mechanisms to help maintain an
up-to-date, complete, accurate, and readily
available inventory of system {installed
software} components.

High DS and AS Otherwise, an up-to-date and accurate
desired state and actual state inventories
might not be available for automated
assessment.

CM-8(3)(a){1} Determine if the organization: employs
automated mechanisms [Assignment:
organization-defined frequency] to detect the
presence of unauthorized software and
firmware components within the system.

Moderate AS Otherwise, inventory accuracy (e.g.,
completeness and timeliness) might be
difficult or impossible to maintain.

NISTIR 8011 VOL. 4 AUTOMATION SUPPORT FOR
SECURITY CONTROL ASSESSMENTS: VUL

99

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

Determination
Statement ID Determination Statement Text Impact

Level
Affects DS
and/or AS Rationale

CM-8(3)(b){1} Determine if the organization: takes the
following actions when unauthorized {installed
software} components are detected: [Selection
(one or more): disables network access by
such components; isolates the components;
notifies [Assignment: organization-defined
personnel or roles]].

Moderate AS Otherwise, detected security defects might
not be mitigated.

CM-8(4){1} Determine if the organization: includes in the
{installed software} system component
inventory information, a means for identifying
by [Selection (one or more): name; position;
role], individuals responsible/accountable for
administering those components.

High DS Otherwise, when defects are detected, the
automated systems cannot know what
persons or groups to notify to take
appropriate action.

Control Allocation Table for Appendix G

Determination
Statement ID

Implemented
By

Assessment
Boundary

Assessment
Responsibility

Assessment
Methods Selected

Rationale for
Risk

Acceptance

Frequency
of

Assessment
Impact of Not
Implementing Level

CM-2{1} DSM ISCM-TN ISCM-Sys Test Low
CM-2(1)(a){1} DSM ISCM-TN ISCM-Sys Test Moderate
CM-2(1)(b){1} DSM ISCM-TN ISCM-Sys Test Moderate
CM-2(1)(c){1} DSM ISCM-TN ISCM-Sys Test Moderate

CM-2(2){1} DSM ISCM-TN ISCM-Sys Test High
CM-3(a){1} DSM ISCM-TN MAN TBD Moderate
CM-3(b){1} DSM ISCM-TN ISCM-Sys Test Moderate
CM-3(b){2} DSM ISCM-TN MAN TBD Moderate
CM-3(c){1} DSM ISCM-TN ISCM-Sys Test Moderate
CM-3(d){1} PatMan ISCM-TN ISCM-Sys Test Moderate
CM-3(f){1} ISCM-Sys ISCM-TN ISCM-Sys Test Moderate
CM-3(f){2} DSM ISCM-TN ISCM-Sys Test Moderate

NISTIR 8011 VOL. 4 AUTOMATION SUPPORT FOR
SECURITY CONTROL ASSESSMENTS: VUL

100

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8011-4

Determination
Statement ID

Implemented
By

Assessment
Boundary

Assessment
Responsibility

Assessment
Methods Selected

Rationale for
Risk

Acceptance

Frequency
of

Assessment
Impact of Not
Implementing Level

CM-3(g){1} DSM ISCM-TN ISCM-Sys Test Moderate
CM-3(g){2} DSM ISCM-TN ISCM-Sys Test Moderate

CM-3(1)(a){1} DSM ISCM-TN ISCM-Sys Test High
CM-3(1)(b){1} ISCM-Sys ISCM-TN ISCM-Sys Test High
CM-3(1)(c){1} ISCM-Sys ISCM-TN ISCM-Sys Test High
CM-3(1)(d){1} ISCM-Sys ISCM-TN ISCM-Sys Test High
CM-3(1)(e){1} ISCM-Sys ISCM-TN MAN TBD High
CM-3(1)(f){1} ISCM-Sys ISCM-TN ISCM-Sys Test High
CM-3(2){1} DSM ISCM-TN MAN TBD Moderate
CM-8(a){1} DSM ISCM-TN ISCM-Sys Test Low
CM-8(a){2} ISCM-Sys ISCM-TN ISCM-Sys Test Low
CM-8(b){1} ISCM-Sys ISCM-TN ISCM-Sys Test Low
CM-8(b){2} DSM ISCM-TN ISCM-Sys Test Low
CM-8(1){1} ISCM-Sys ISCM-TN ISCM-Sys Test Moderate
CM-8(2){1} ISCM-Sys ISCM-TN ISCM-Sys Test High

CM-8(3)(a){1} ISCM-Sys ISCM-TN ISCM-Sys Test Moderate
CM-8(3)(b){1} PatMan ISCM-TN ISCM-Sys Test Moderate

CM-8(4){1} DSM ISCM-TN ISCM-Sys Test High

	NISTIR 8011 Vol. 4, Automation Support for Security Control Assessments: Software Vulnerability Management
	Executive Summary
	1 Introduction
	1.1 Purpose and Scope
	1.2 Target Audience
	1.3 Organization of this Volume
	1.4 Interaction with Other Volumes in this NISTIR

	2 Software Vulnerability Management (VUL) Capability Definition, Overview, and Scope
	2.1 Find Defects/Prioritize Response
	2.2 VUL Attack Scenarios and Desired Result
	2.3 Assessment Objects Managed and Assessed by VUL
	2.3.1 Common Vulnerabilities and Exposures (CVEs)
	2.3.2 Common Weakness Enumerations (CWEs)
	2.3.3 Roles for Mitigation of CVEs and CWEs
	2.3.3.1 Software Flaw Manager (SWFM)
	2.3.3.2 Patch Manager (PatMan)

	2.4 Example VUL Data Requirements19F
	2.5 VUL Concept of Operational Implementation
	2.5.1 Collect Actual State
	2.5.1.1 Actual State Data from the Operating System Software Database21F
	2.5.1.2 Actual State Data from Vulnerability Scanners
	2.5.1.3 Actual State Data from Software Whitelisting Inventory
	2.5.1.4 Actual State Data from Code Analyzers

	2.5.2 Collect Desired State
	2.5.2.1 Desired State Data from the National Vulnerability Database (NVD)
	2.5.2.2 Desired State Data from Vulnerability Scanners
	2.5.2.3 Desired State Data from Developer Package Manifests
	2.5.2.4 Desired State Data from Approved Patch Level List
	2.5.2.5 Desired State Data from CWE (Coding Weakness) Information
	2.5.2.6 Desired State Data from Shared Code

	2.5.3 Find/Prioritize Defects

	2.6 NIST SP 800-53 Controls and Control Items that Support VUL
	2.6.1 Process for Identifying Needed Controls
	2.6.2 Control Item Nomenclature

	2.7 VUL-specific Roles and Responsibilities
	2.8 VUL Assessment Boundary
	2.9 VUL Actual State and Desired State Specification
	2.10 VUL Authorization Boundary and Inheritance
	2.11 VUL Assessment Criteria Recommended Scores and Risk-Acceptance Thresholds
	2.12 VUL Assessment Criteria Device Groupings to Consider

	3 VUL Security Assessment Plan Documentation Template
	3.1 Introduction and Steps for Adapting This Plan
	3.1.1 Select Defect Checks to Automate
	3.1.2 Adapt Roles to the Organization
	3.1.3 Automate Selected Defect Checks

	3.2 VUL Sub-Capabilities and Defect Check Tables and Template
	3.2.1 Foundational Sub-Capabilities and Corresponding Defect Checks
	3.2.1.1 Reduce Software Vulnerabilities Sub-Capability and Defect Check VUL-F01

	3.2.2 Foundational Sub-Capabilities and Corresponding Defect Checks
	3.2.2.1 Ensure Completeness of Device-Level Reporting Sub-Capability and Defect Check VUL-Q01
	3.2.2.2 Ensure Completeness of Defect Check-Level Reporting Sub-Capability and Defect Check VUL-Q02
	3.2.2.3 Ensure Overall Defect Check Reporting Completeness Sub-Capability and Defect Check VUL-Q03
	3.2.2.4 Ensure Overall Reporting Timeliness Sub-Capability and Defect Check VUL-Q04

	3.2.3 Local Sub-Capabilities and Corresponding Defect Checks
	3.2.3.1 Reduce Poor Coding Practices Sub-Capability and Defect Check VUL-L01

	3.2.4 Security Impact of Each Sub-Capability on an Attack Step Model

	3.3 VUL Control (Item) Security Assessment Plan Narrative Tables and Templates
	3.3.1 Outline Followed for Each Control Item
	3.3.2 Outline Organized by Baselines
	3.3.3 Low Baseline Security Control Item Narratives
	3.3.3.1 Control Item RA-5(a): VULNERABILITY SCANNING
	3.3.3.2 Control Item RA-5(a): VULNERABILITY SCANNING
	3.3.3.3 Control Item RA-5(b): VULNERABILITY SCANNING
	3.3.3.4 Control Item RA-5(c): VULNERABILITY SCANNING
	3.3.3.5 Control Item RA-5(d): VULNERABILITY SCANNING
	3.3.3.6 Control Item RA-5(e): VULNERABILITY SCANNING
	3.3.3.7 Control Item SI-2(a): FLAW REMEDIATION
	3.3.3.8 Control Item SI-2(b): FLAW REMEDIATION
	3.3.3.9 Control Item SI-2(c): FLAW REMEDIATION
	3.3.3.10 Control Item SI-2(d): FLAW REMEDIATION

	3.3.4 Moderate Baseline Security Control Item Narratives
	3.3.4.1 Control Item RA-5(1): VULNERABILITY SCANNING | UPDATE TOOL CAPABILITY
	3.3.4.2 Control Item RA-5(2): VULNERABILITY SCANNING | UPDATE BY FREQUENCY / PRIOR TO NEW SCAN / WHEN IDENTIFIED
	3.3.4.3 Control Item SA-11(d): DEVELOPER SECURITY TESTING AND EVALUATION
	3.3.4.4 Control Item SI-2(2): FLAW REMEDIATION | AUTOMATED FLAW REMEDIATION STATUS

	3.3.5 High Baseline Security Control Item Narratives
	3.3.5.1 Control Item SI-2(2): FLAW REMEDIATION | AUTOMATED FLAW REMEDIATION STATUS

	3.4 Control Allocation Tables (CATs)
	3.4.1 Low Baseline Control Allocation Table
	3.4.2 Moderate Baseline Control Allocation Table
	3.4.3 High Baseline Control Allocation Table

	References
	Appendix A Traceability of VUL Control Items to Example Attack Steps
	Appendix B Keyword Rules Used to Identify Controls that Support VUL
	Appendix C Control Items in the Low-High Baseline that were Selected by the Keyword Search for Controls that Support VUL, but were Manually Determined to be False Positives
	Appendix D Control Items Not in the Low, Moderate, or High Baselines
	Appendix E VUL-Specific Acronyms and Abbreviations
	Appendix F Glossary
	Appendix G Control Items Affecting Desired and/or Actual State from All Defect Checks in this Volume

