
CLOUD THREAT REPORT
2H 2020
Never trust, always verify.

 P a l o A l t o N e t w o r k s | U n i t 4 2 | C l o u d T h r e a t R e p o r t , 2 H 2 0 2 0 2

Table of Contents
Foreword 3

Executive Summary 4

01 Identity and Access Management 5

Identity Flaws Worth Millions 5

Misconfigured IAM Trust Policy 6

Lateral Movement and Privilege Escalation 8

Real-World Examples 12

Misconfigurations Are Relatively Easy to Find 12

Thousands of Public-Facing Misconfigurations 14

02 Evidence-Based Findings 15

Industry Trends 15

IAM Trends by Cloud Service Provider 15

03 Cloud Infrastructure Threats 18

Cryptojacking Operations 19

Most Common Public Mining Pool 20

Most Common Port Usage 21

Top 5 Traffic Destination Countries 22

Cryptojacking Tool Spotlight 23

Battle with Known Threat Actors 25

04 Conclusion and Recommendations 26

IAM Best Practices 26

Cryptojacking Defense Best Practices 27

About 27

Prisma Cloud 27

Unit 42 28

Methodology 28

Authors 28

 P a l o A l t o N e t w o r k s | U n i t 4 2 | C l o u d T h r e a t R e p o r t , 2 H 2 0 2 0 3

Foreword
Historically, defense in depth has mostly been performed through network-layer controls. While
network security controls remain an important component of cloud security, an additional layer of
identity and access management (IAM) governance is now needed as organizations continue to scale
their cloud presence. Similar to scanning applications for vulnerabilities, IAM policies across all cloud
accounts must be constantly monitored and evaluated to determine the risk impact to the business.

Research findings from two large-scale projects, a Red Team exercise and a GitHub®
reconnaissance operation, clarified this need. In the Red Team exercise alone, one simple IAM
misconfiguration allowed our Unit 42 researchers to compromise an entire, massively scaled
cloud environment and bypass just about every security control.

Given the severity of this finding, Unit 42 researchers quickly pivoted to measure just how pervasive
IAM misconfigurations were across other cloud environments. They found several common
identity-related flaws across thousands of cloud accounts, many of which could seemingly be
attributed to a lack of IAM governance and standards.

Consider figure 1, where the user account has access across three different cloud providers, each with its
own unique roles and permissions. The governance challenge here comes from the sheer volume of user
and machine roles combined with permissions and services that are created in each cloud account.

Humans are good at many things, but understanding effective permissions and identifying risky
policies across hundreds of roles and different cloud service providers are tasks best left to algorithms
and automation. Read the report and find out how to take action!

Cloud Account 1

1

2

DevOpsAdmin

StagingBuilder

√

√
X

Policy 1
Call Service X

Allow

Policy 2
Call Service Y

Allow

Policy 3
Call Service Z

Deny

Policy 1
Call Service X

Allow

Policy 2
Call Service Y

Deny

Policy 3
Call Service Z

Deny

∞ ∞

Cloud Provider X

Roles

Cloud Account 2

1

2

DevOpsWriter

ProdPush

√

√
X

Policy 1
Call Service X

Allow

Policy 2
Call Service Y

Allow

Policy 3
Call Service Z

Deny

Policy 1
Call Service X

Deny

Policy 2
Call Service Y

Deny

Policy 3
Call Service Z

Allow

∞ ∞

Cloud Provider Y

Roles

Cloud Account n

1

2

CICDPush

SmokeTesterProd

√

√
X

Policy 1
Call Service X

Deny

Policy 2
Call Service Y

Allow

Policy 3
Call Service Z

Allow

Policy 1
Call Service X

Allow

Policy 2
Call Service Y

Deny

Policy 3
Call Service Z

Deny

∞ ∞

Cloud Provider Z

Roles

User

Figure 1: Cloud user account access diagram

Matthew Chiodi
CSO, Public Cloud at Palo Alto Networks

 P a l o A l t o N e t w o r k s | U n i t 4 2 | C l o u d T h r e a t R e p o r t , 2 H 2 0 2 0 4

Executive Summary
Cloud is poised to become the dominant way that organizations store their data and manage
applications. Our own data shows 46% of organizational workloads are already there, with the figure
likely to grow to 64% in the next 24 months. To better understand the threat landscape associated with
this rapid shift, Unit 42 researchers focused deeply on identity in the cloud. They analyzed methods
that attackers use to silently perform reconnaissance operations, as well as common threat actors.
Researchers also carefully identified steps organizations can take to build a cloud security program
based upon identity best practices. The research took place between May and August 2020 and was
global in scope—spanning terabytes of data, thousands of cloud accounts, and more than 100,000
GitHub code repositories. Overall, the findings indicate that identity misconfigurations are prevalent
across cloud accounts and represent a significant security risk to organizations, which can lead to
costly data breaches.

Cloud Identity Flaws Are Difficult
to Detect

During a Red Team exercise, Unit 42
researchers were able to use a customer
misconfiguration to compromise an
entire Amazon Web Services (AWS®)
environment, with thousands of workloads,
in less than one week. They were able to
do this by exploiting a single misconfigured
IAM trust policy. With this flaw, an attacker
could launch any number of attacks against
an organization, including denial-of-service
(DoS) and ransomware, or even open a
door for an advanced persistent threat
(APT) adversary. Because identity defects
are difficult to detect, especially at scale,
many go unnoticed by organizations until
it’s too late.

Identity Misconfigurations Lead to
High-Impact Failures

In the same Red Team exercise, Unit 42
researchers identified an IAM role used
by hundreds of users, which they were
able to compromise. This allowed them
to achieve administrative access outside
of the development area. Once outside of
development, the misconfigured IAM role
allowed researchers to identify and hijack
a legitimate administrator account and
establish full administrative control over the
entire cloud environment. With the “keys
to the kingdom,” attackers could launch any
number of attacks against an organization,
such as stealing sensitive data or wiping out
the entire infrastructure.

JAPAC and EMEA Organizations
Display Poor Cloud Identity Hygiene

Unit 42 researchers found that 75% of
organizations in Japan and Asia-Pacific
(JAPAC) as well as 74% of organizations in
Europe, the Middle East, and Africa (EMEA)
are using Google Cloud to run workloads with
admin privileges. By contrast, only 54% of
organizations in the Americas run with the
same type of privileges. It is a best practice
to run workloads with the principle of least
privilege—limiting permissions for users to
the bare minimum they need. If an attacker is
able to compromise a workload with admin
privileges, they would gain the same level
of elevated access. This provides an easy
path for attackers to use cloud resources to
perform attacks, like cryptojacking operations,
at the expense of the organization.

Cryptojacking Remains a Persistent
Threat for Organizations

Unit 42 research shows cryptojacking affects
at least 23% of organizations globally that
maintain cloud infrastructure—a sharp rise
from the 8% that researchers observed in
February 2018. The mining pools connected
to by cloud organizations are more often
located in the United States, with 69% of
all public mining traffic being directed to US
systems. This is due to the majority of the
Monero nodes being hosted on US systems.
Monero is a popular cryptocurrency used in
cryptojacking operations.

https://www.paloaltonetworks.com/state-of-cloud-native-security

 P a l o A l t o N e t w o r k s | U n i t 4 2 | C l o u d T h r e a t R e p o r t , 2 H 2 0 2 0 5

01
Identity and Access Management
Identity Flaws Worth Millions
In the spring of 2020, the Unit 42 cloud threat
intelligence team was approached by a customer
who wanted the group to test the defenses of the
customer’s AWS infrastructure. While offensive
operations are not something Unit 42 typically
carries out, they were intrigued by the size and
complexity of this particular environment. The
customer ran thousands of workloads, hundreds of
Amazon Simple Storage Service (S3) buckets, and
cloud native databases with more than 500 active
development users and nearly 1,000 roles across four
AWS accounts. Unit 42 researchers would classify
this exercise as a “gray box penetration test” since
they were provided limited information about the
internal architecture and given limited access to
the environment itself. It took Unit 42 researchers
less than a week to discover two critical IAM
misconfigurations, which rippled through all the
customer’s AWS accounts, either of which could be
crippling for any organization.

The Red Team exercise involved two high-level techniques. The first, titled “Misconfigured IAM
Trust Policy,” details an “outside in” style of penetration. The attacker is unauthorized and has no
access to internal credentials, but is able to gain access to internal resources. The second technique,
titled “Lateral Movement and Privilege Escalation,” details an “inside up” style of attack. Here, the
attacker starts with limited access (non-administrative access) and is able to escalate privileges to
gain administrative access to the entire cloud environment.

Unit 42 researchers also attempted other IAM penetration techniques, such as checking policies
across S3 buckets, Amazon Elasticsearch Service and Amazon EBS snapshot. All these techniques
are based on real-world incidents, highlighting how vulnerable IAM misconfigurations can be.

The first IAM misconfiguration allowed the Unit 42 team to access sensitive data within internal,
non-public S3 buckets. These S3 buckets contained sensitive internal information, such as
certificate keys, database credentials, and a source code repository. If an attacker had obtained
access to these S3 buckets, they could have launched any number of attacks against an organization,
including DoS and ransomware, or even open a door for an APT adversary. An APT adversary would
likely gain a beachhead by implanting backdoor code into the source code, leading to a significant
disruption in business operations and revenue.

Attackers are actively attempting
to scan for credentials within cloud
environments. This is most notably
evident from the cryptojacking
operations of Kinsing and TeamTnT,
when, upon compromise of a cloud
instance, malware will scan for any
configured AWS credentials and
attempt to send those credentials to
a command and control (C2) node.
Access to these credentials allows the
attackers to expand the attackable
surface and increase their chances of
identifying a misconfigured IAM role.
For more information regarding the
operations of Kinsing and TeamTnT,
see Cryptojacking Tool Spotlight.

https://aws.amazon.com/premiumsupport/knowledge-center/secure-s3-resources/
https://docs.aws.amazon.com/elasticsearch-service/latest/developerguide/fgac.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-modifying-snapshot-permissions.html

 P a l o A l t o N e t w o r k s | U n i t 4 2 | C l o u d T h r e a t R e p o r t , 2 H 2 0 2 0 6

The second misconfiguration was over-privileged IAM roles assigned to non-administrator user
accounts. Unit 42 researchers identified non-administrator user accounts that were granted access
to an administrative IAM policy. This allowed the researchers to escalate their privileges and gain
administrative access to the entire cloud environment. With the “keys to the kingdom,” attackers
can launch any number of attacks against an organization, such as stealing sensitive data, wiping
out the entire infrastructure, or locking down the operation with ransomware.

Unit 42 researchers note that AWS has tried its best to detect and alert users when an IAM
trust policy is misconfigured. When a new IAM role is created in the console, its trusted
principle is always limited to specific AWS services, accounts, or identity providers.
However, while IAM trust policies are secure by default, users can still override the policies
and introduce insecure configurations. Multiple warnings are alerted in the policy editor and
policy viewer in these instances. AWS also offers their free IAM Access Analyzer to help
identify unintended access to resources and data that are shared with an external entity.

Unit 42 researchers estimated the potential financial impact of a data breach for this customer
could have easily been in the tens of millions, given the customer’s scale and business model.
Fortunately, forensic work indicated that no malicious actors had successfully exploited these IAM
misconfigurations, and Palo Alto Networks helped the customer remediate the issues.

The following sections explain in detail how these two techniques were executed.

Misconfigured IAM Trust Policy

For the “outside in” approach, Unit 42 researchers were able to successfully leverage the AWS IAM
feature “AssumeRole” to gain temporary internal access using an unauthenticated external AWS
account. The root cause that allowed this unauthenticated access was an overly permissive IAM role
trust policy. The misconfigured policy allowed any AWS user who is not in the account to assume
the role and obtain an access token.

This issue was further amplified across multiple AWS accounts due to the use of infrastructure
as code (IaC). The customer used Terraform® IaC to manage and provision services across their
production, development, and government clouds. Although it is a best practice to use IaC to
assure the quality of large-scale application deployments, a vulnerable configuration in an IaC
template could lead to a catastrophic ripple effect—such as what would have likely happened to
this customer given enough time. The misconfigured trust policy in this customer’s IaC template
was replicated to multiple roles across multiple accounts. Unit 42 researchers found more than 30
vulnerable entry points in the customer’s cloud environment that could all have been exploited the
same way. Put simply, the chance of an account with 30 misconfigured roles being compromised is
30 times higher than an account with only one misconfigured role.

https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://unit42.paloaltonetworks.com/cloud-threat-report-intro/
https://unit42.paloaltonetworks.com/cloud-threat-report-intro/

 P a l o A l t o N e t w o r k s | U n i t 4 2 | C l o u d T h r e a t R e p o r t , 2 H 2 0 2 0 7

Path of Attack

Figure 2 shows an example of misconfigured IAM roles (obfuscated to protect our customer’s
identity, which could easily be inferred from the role names). The trusted entities of these roles are
“Account: *,” meaning that all AWS accounts are allowed to assume these roles. Figure 3 shows the
permission policies attached to these roles. They all have access to Elastic Compute Cloud (Amazon
EC2®), S3, and Key Management Service (KMS). Although each role has only a limited number of
permissions, Unit 42 researchers were able to use these permissions to move laterally to adjoining
S3 buckets attached to the accounts, and eventually gain access to sensitive data.

Figure 2: Overly permissive IAM roles trust policy

Figure 3: The misconfigured IAM role has limited access to S3, EC2, and KMS services

Figure 4 illustrates how the researchers discovered, exploited, moved laterally toward, and eventually
gained access to credentials in the customer’s AWS cloud environment. Unit 42 researchers identified
and confirmed the step- by-step actions an attacker could take to compromise the environment:

1. Obtain a list of role names through reconnaissance and enumeration (e.g., prodApp-nat,
prodApp-app2-nat). Because the role names are short and somewhat predictable, it is feasible to
find a misconfigured role through enumeration.

2. Procure a temporary access token by assuming the misconfigured role. With the access token, the
attacker can enumerate the permissions and find the resources the role can access.

3. See all the EC2 instances and obtain the metadata attached to these instances. From the startup
script attached to each VM, the attacker can obtain information such as the Docker images the VM
deploys, the database that the VM queries, and the S3 buckets the VM pulls data from.

4. Access the S3 buckets found in the EC2 metadata and download all the data. There are certificate
keys, multiple shell scripts used for deploying applications, and a few encrypted files containing
credentials.

 P a l o A l t o N e t w o r k s | U n i t 4 2 | C l o u d T h r e a t R e p o r t , 2 H 2 0 2 0 8

5. Use the AWS KMS decrypt capability available to the role to decrypt the ciphertext, giving them
plaintext access credentials.

6. Acquire the plaintext credentials. With these, the attacker can move laterally and access the
Docker Hub repository, Splunk server, and databases.

Misconfigured
Roles

1Enumerate
role names

2

Enumerate session
token permissions

EC2, S3, KMS
Access

3

Enumerate EC2
user data and get
a list of S3 buckets

4Get encrypted
objects from S3

Decrypt objects
using KMS

5
Service

credentials

Access more
services

6

N

Access
S3

KMS Decrypt

Figure 4: Attacker's use of the AssumeRole feature chain of events

If attackers had beaten the Unit 42 team in discovering this IAM misconfiguration, they could have
launched any number of attacks against this customer. This specific situation would have proven
fertile ground for an APT adversary. This type of attacker looks for misconfigurations like this
to gain a foothold, and likely would have implanted backdoor code into the source code, spelling
disaster for both the customer and the customer’s clients.

Lateral Movement and Privilege Escalation

For the “inside up” approach, Unit 42 researchers were able to successfully move laterally with
non-administrator access by leveraging a misconfigured IAM role related to flow log management.
They escalated their privileges from a restricted developer account to gain persistence within the
customer’s AWS cloud environment by hijacking an administrator account. By leveraging an overly
permissive IAM role related to flow logs, Unit 42 researchers gained administrative access to the
entire cloud environment, allowing for the unrestricted manipulation of cloud resources. They
were then able to create new Amazon EC2 and Amazon Relational Database Service (RDS) instances
as well as modify user and policy permissions.

https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html

 P a l o A l t o N e t w o r k s | U n i t 4 2 | C l o u d T h r e a t R e p o r t , 2 H 2 0 2 0 9

Path of Attack

Unit 42 researchers identified developer accounts that could be leveraged to expand the attackable
surface area of the cloud environment. Traditionally, developer accounts are allowed a higher level
of access to cloud environments than standard users. While this was also true within this cloud
environment, the developer accounts were subject to security constraints. They were not allowed to
perform any administrative actions outside of the given development environment (see figure 5).

For example, users of these developer accounts would not have administrative access to IAM
resources, such as user accounts or policies. The developer accounts were limited to the following set
of AWS resources and were only able to manipulate these resources within a predefined development
environment:

• Database administration

• System administrator

• Network administrator

• Key management service

• Amazon Elastic Map

EC2 RDS Lambda Flow Logs KMS

Security Boundaries

Attacker/Researcher/Developer

User Accounts IAM Policy IAM Roles

X X

Cloud Environment

Developer Area

Figure 5: Developer access limitations

 P a l o A l t o N e t w o r k s | U n i t 4 2 | C l o u d T h r e a t R e p o r t , 2 H 2 0 2 0 1 0

Upon enumerating the permissions of the developer
account, Unit 42 researchers identified a glaring
security hole: developer accounts had access to
a custom organization-specific IAM role called
flowlog*. The asterisk signified that all flow log
subtypes were available to the developer account,
which included a role titled flowlogs.role-admin.
This flaw would allow an attacker to escape the
developer area and achieve administrative access to
the entire cloud environment. The attacker would
then be able to manipulate any resource within the
customer’s cloud environment—all courtesy of an
overly permissive admin IAM role.

Since the developer account contained access to
the IAM role flowlogs.role-admin and also had
the ability to create new EC2 instances, Unit 42
researchers created a new EC2 instance and assigned
to that instance the administrator flow log IAM
role. Upon the successful creation of the
new EC2 instance, enumeration of the
system’s permissions was performed
using the AWS command line interface
(CLI) command describe-resource-
permissions (see figure 6). The image
was created using the output of a 3rd
party tool, Pacu, which concatenates
several commands into a single output.
Using the AWS CLI alone will not produce
the same output.

In the screenshot in figure 6,
AdministratorAccess was granted
to the EC2 instance, and the instance
maintained open permissions to all
resources within the cloud environment.

A note on asterisks: Any time an
asterisk exists within an IAM role
or policy, or even within an IaC
template, the asterisk designates
a wildcard, or rather a “select-all”
functionality, for any entity that
matches the given criteria. Asterisks
should be considered red flags for
security professionals, and efforts
should be made to enumerate
all possible subtypes presented
within an asterisk to ensure overly
permissive resources are not present.
“When in doubt, spell it out” should
become a mantra for IT admins,
development engineers, and security
professionals alike.

Figure 6: Permissions for flowlogs.role-admin

https://rhinosecuritylabs.com/aws/pacu-open-source-aws-exploitation-framework/

 P a l o A l t o N e t w o r k s | U n i t 4 2 | C l o u d T h r e a t R e p o r t , 2 H 2 0 2 0 1 1

Having gained full administrative rights to the
cloud environment via the creation of a new
EC2 instance with administrative rights, Unit
42 researchers attempted to gain persistence
within the environment. They hijacked
an administrator account and used that
legitimate administrator account to create new
users and resources. By using the list-users
command from within the newly created EC2
instance, Unit 42 researchers were able to
collect user access IDs. By using the commands
get-user, list-permissions, list-groups-
for-user, and list-user-policies, they
gathered additional insight into the rights
granted to the hijacked administrator account
(see figure 7).

Figure 7 shows that Unit 42 researchers
were no longer restricted to the developer
area and could create as well as modify
any resource within the entire cloud
environment (see figure 8).

An attacker with this access could have followed
any number of playbooks against the customer,
including data exfiltration, disruption of
business operations, and/or locking down the
environment with ransomware.

Figure 7: Hijacked administrator user permissions

EC2 Flow Logs

Attacker/Researcher

User Accounts IAM Policy IAM Roles

Cloud Environment

Developer Area

Access

Attach the flow log admin role

Create new
EC2 Instance

Access outside of
developer area

Figure 8: Attacker’s access to administrative rights

 P a l o A l t o N e t w o r k s | U n i t 4 2 | C l o u d T h r e a t R e p o r t , 2 H 2 0 2 0 1 2

Real-World Examples
Since this type of misconfiguration can be observed and exploited in the wild, Unit 42 researchers
were curious to discover how common these types of IAM role misconfigurations were. The
researchers’ approach was to use publicly available data to conduct the reconnaissance operations.

Two critical pieces of information for assuming an
IAM role are the AWS Account ID and AWS IAM Role
Name. An AWS account ID is a 12-digit number that
uniquely identifies an account. AWS account ID is
included in every Amazon Resource Name (ARN) used
to uniquely identify AWS resources.

For example, arn:aws:iam::123456789012:user/
Development/Alice identifies user Alice in AWS
account 123456789012. arn:aws:lambda:us-
west-2:987654321098:function:demo-function
identifies the Lambda function demo-function in AWS account 987654321098.

Most IAM roles (other than Service-Linked Roles) are created and maintained by the account
owner, not AWS. The naming syntax is similar to username, and the role names are usually created
based on the functionalities of the role. For example, the role lambda_basic_execution is expected
to have Lambda invocation permission, and the role ecsInstanceRole is expected to be attached to
an ECS instance.

Misconfigurations Are Relatively Easy to Find

Searching for misconfigured IAM roles is similar to searching for exposed databases that allow
anonymous login. Instead of scanning for IP addresses, however, Unit 42 researchers performed a
scan for AWS account IDs. For each valid AWS ID identified, its role names were checked against a pre-
generated list created by crawling GitHub and aggregating the top 500 most-used IAM role names.

If any of the role names existed in the account and were misconfigured, Unit 42 researchers (or
attackers) could presumably assume this role and obtain an access token by using the methods
described previously. This step is like guessing default usernames and passwords in a database.
Although it is possible to enumerate all 12 digits of an AWS account ID from 000000000000 to
999999999999, the enumeration is time-consuming and can be blocked by AWS.

Instead, Unit 42 researchers crawled GitHub for potential AWS ID and role name matches. Due to the
popularity of IaC templates such as AWS CloudFormation and Terraform, it was straightforward to
analyze the components in cloud infrastructure by parsing IaC text files.

The amount of data in GitHub was sufficient for a proof of concept. Overall, Unit 42 researchers
analyzed 283,751 files across 145,623 repositories, identifying 32,987 confirmed AWS account IDs
and 68,361 role names.

Neither AWS account IDs or IAM role
names should be treated as secrets.
They are commonly shared and used
by multiple entities. However, it is
a best practice to use unguessable
role names as they can help mitigate
brute-force attacks.

https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-iam-role.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-iam-role.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html
https://aws.amazon.com/cloudformation/
https://www.terraform.io/

 P a l o A l t o N e t w o r k s | U n i t 4 2 | C l o u d T h r e a t R e p o r t , 2 H 2 0 2 0 1 3

Figure 9 shows the high-level research methodology:

• GitHub search: Use GitHub API to search keywords used in ARNs. The AWS IAM document lists a set
of possible ARNs.

• File analysis: Use static analysis to parse out potential AWS account IDs and IAM role names.

• Validation: Check if the parsed AWS account IDs exist by sending HTTP requests to the console
login page.

• Role name enumeration: Enumerate validated AWS account IDs with the parsed role names from
GitHub.

• Configuration check: Check the configuration of each (AccountID, role name) pair by assuming this
role. The role can be successfully assumed if its trust policy allows anyone to use it.

</>

> > > -

AWS Account IDs

AWS Role Names

123456789012
234567890123

345678901234
456789012345

roleName1
roleName2

rolename3
rolename4

Valid Account IDs

123456789012
345678901234

456789012345

√

roleName2
roleName4

rolename6

ID: 34567891234

File
analysis

Configuration
check

roleName2
roleName4

rolename6

ID: 34567891234

Role name
enumeration

GitHub
search

Figure 9: Research methodology illustration

32,987
potential accounts

145,623
repositories

68,361
role names

283,751
files

Figure 10: GitHub search result totals

https://docs.github.com/en/rest
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_actions-resources-contextkeys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_how-users-sign-in.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_how-users-sign-in.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html

 P a l o A l t o N e t w o r k s | U n i t 4 2 | C l o u d T h r e a t R e p o r t , 2 H 2 0 2 0 1 4

Thousands of Public-Facing Misconfigurations

The data from GitHub, when combined with other sources, revealed more than 175,000 EC2
snapshots, hundreds of S3 buckets, and many RDS snapshots and KMS keys. Make no mistake: if
attackers had discovered what Unit 42 researchers found, they would have assuredly taken steps
to “own” these cloud accounts. The resources leaked from a misconfigured IAM role depended on
the permission policy of the role itself. Researchers discovered misconfigured DevOps roles that
had near-system admin permissions. Also found were misconfigured DBAccess roles that had
access to database services such as Amazon DynamoDB® and Amazon Redshift®. Finally, there were
LambdaExecution roles that allowed only basic Get and Invoke actions on Lambda functions.

Regardless of the types of resources these misconfigured roles could access, they all leaked
information that malicious actors can exploit. A compromised cloud account could be much
worse than a compromised cloud host because a cloud account may have access to hundreds
or thousands of cloud resources. There have been instances where attackers ran cryptojacking
software on compromised cloud hosts and walked away with AWS credentials. The seemingly
endless resources in the cloud make the infrastructure an attractive target. Even an account with
only Lambda execution permission could pose significant financial impact by invoking a large
number of function calls.

As mentioned earlier, AWS has tried its best to detect and alert users when an IAM trust policy is
misconfigured. When a new IAM role is created in the console, its trusted principle is always limited
to specific AWS services, accounts, or identity providers.

Although IAM trust policies are secure by default, users can still override the policies and introduce
insecure configurations. If a user edits the trust policy in the AWS console, multiple warnings are
alerted in the policy editor and policy viewer, as shown in figure 11.

Unfortunately, insightful events and alerts such as these are too often ignored. The following
section explores additional examples.

Figure 11: Overly permissive policy warning in the AWS console

https://www.cadosecurity.com/2020/08/17/teamtnt-the-first-crypto-mining-worm-to-steal-aws-credentials/

 P a l o A l t o N e t w o r k s | U n i t 4 2 | C l o u d T h r e a t R e p o r t , 2 H 2 0 2 0 1 5

02
Evidence-Based Findings
Industry Trends
As part of each Cloud Threat Report, Unit 42 researchers present updates on trends they have
been tracking, looking for clear indications of the overall security posture of cloud infrastructure
around the world. Substantiating the real-world effect of IAM misconfigurations became possible
by investigating the alerts and events that originate from cloud accounts. Unit 42 researchers
pinpointed specific areas where organizations may need to spend more time securing and verifying
their configurations prior to deployment.

75% 57%

Using administrative access
accounts within VM instances
can allow attackers to easily
compromise wider cloud resources.
See Lateral Movement and Privilege
Escalation for an example of this
compromise.

As with traditional passwords,
access key maintenance is a
critical component of cloud
security hygiene. Access keys
should be rotated regularly to
prevent compromise.

Additionally, 27% of JAPAC organizations
do not have MFA enabled for AWS Root
accounts. MFA remains one of the surest ways
to add immediate defense in depth to cloud
infrastructure. While there are many forms of
MFA, some stronger than others (phone-based
SMS being on the weaker side; hardware tokens
being the strongest), what’s most important
is that some type of MFA be implemented for
users with elevated (root) privileges.

IAM Trends by Cloud Service Provider
When it comes to IAM risks, each CSP addresses them differently and, more often than not, in a siloed
fashion. In examining IAM risks, Unit 42 researchers normalized findings to make a fairer, apples-to-
apples comparison between each of the CSPs as well as provide a regional component to the research.

Analysis revealed a common structure in the IAM findings. Researchers found the most common
risks within each of the three regions—the Americas, EMEA, and JAPAC—closely mirrored each
other when compared across the usage of the three primary CSPs (AWS, Microsoft Azure®, and
Google Cloud) within those regions.

Figure 12: Trend of policy violations

66%

75% of JAPAC organizations
over-prescribe permissions

to Google Cloud hosts

66% of organizations
worldwide are using access
keys for longer than 90 days

57% of JAPAC organizations
do not have multi-factor

authentication (MFA)
enabled for AWS IAM user

 P a l o A l t o N e t w o r k s | U n i t 4 2 | C l o u d T h r e a t R e p o r t , 2 H 2 0 2 0 1 6

Unit 42 researchers found that 75% of JAPAC organizations and 74% of EMEA organizations
were using Google Cloud VM instances with administrative rights. This is in contrast to only 58%
for organizations in the Americas region. This may not be surprising, given research by IDC in
2018 as part of the MaturityScape Benchmark: Cloud in Asia/Pacific (excluding Japan). IDC found
that more than 85% of APAC organizations are still in the nascent stages of cloud maturity. In
O’Reilly’s Evolving Data Infrastructure report in 2018, the survey found that only 24% of European
organizations felt they were “sophisticated cloud users.” The lack of skills and talent among the
workforce was pointed to as the leading contributor for this sentiment. Organizations that fall into
these buckets can find themselves needlessly exposing their cloud resources to attacks, such as
cryptojacking, ransomware, and intellectual property theft.

 Table 1: Google Cloud VM Instances with Admin Rights by Region

User Account Permissions Americas EMEA JAPAC Global

Google Cloud VM instances with
administrative rights 58% 74% 75% 62%

Unit 42 researchers also found that JAPAC organizations (60%) were more likely than Americas
organizations (49%) to allow non-corporate,1 third-party accounts, such as managed security
service provider (MSSP) accounts or personal accounts, to access their Google Cloud environments.
It appears that APAC (excluding Japan) is well on its way to meeting IDC’s 2024 prediction that 60%
of APAC organizations will rely on third-party organizations to assist with containers, open source,
and cloud native application development.

JAPAC organizations (82%) are also more likely than EMEA organizations (74%) and Americas
organizations (72%) to have AWS user accounts inactive for more than 30 days. At this time, however,
it appears that JAPAC—as well as EMEA and the Americas, to some degree—have yet to implement
IAM governance best practices when it comes to managing user access to cloud environments.

1. Non-corporate accounts are those that do not match the corporate domain naming convention (e.g., companyname.com). Examples include any supporting MSSP
 accounts, where MSSP employees use their own company accounts to log in to a customer cloud environment or personal account, such as gmail.com or outlook.com.

 Table 2: Account Violations by Region

User and Key Access Violations Americas EMEA JAPAC Global

Non-corporate accounts have access to
Google Cloud resources 49% 51% 60% 51%

AWS inactive users for more than 30 days 72% 74% 82% 73%

AWS access keys are not rotated for 90 days 67% 72% 67% 68%

Google Cloud user managed service account
keys are not rotated for 90 days 64% 62% 60% 62%

https://datacenternews.asia/story/cloud-maturity-lacking-apac-idc-says-msps-could-be-answer
https://www.computerweekly.com/news/252462373/Europe-is-playing-catch-up-with-the-US-on-cloud-adoption-research-suggests
https://www.idc.com/getdoc.jsp?containerId=prAP46093220&utm_medium=rss_feed&utm_source=Alert&utm_campaign=rss_syndication

 P a l o A l t o N e t w o r k s | U n i t 4 2 | C l o u d T h r e a t R e p o r t , 2 H 2 0 2 0 1 7

Another security component of IAM lies with the usage and maintenance of access keys. Access keys
are used to provide a robust form of authentication when accessing cloud resources. Access keys are
made up of two components, a 16 to 128 character Access Key ID, like AKIAIOSFODNN7EXAMPLE,
and a Secret Access Key, like wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY. In order to access
an account, the Access Key ID and the Secret Access Key need to be used together to authenticate.
In the same manner as a username and password, the Access Key ID can be known to several people
but the Secret Access Key is a private key that should only be known to the account owner.

However, access keys, just like traditional passwords, are only useful if managed correctly. More
trust can be placed in access keys—and more importantly, in the integrity of the data they protect—
if they are maintained and changed regularly. Private keys can be leaked, stolen, or acquired by
various means. Changing or rotating access keys is a critical part of maintaining cloud security.

Worldwide, Unit 42 research found that 68% of organizations using AWS and 62% of organizations
using Google Cloud have service account keys older than 90 days.

In an analysis of MFA practices by cloud
organizations, Unit 42 researchers found that a
staggering 57% of JAPAC organizations did not
enable MFA within their AWS environments for
IAM user accounts. This is in contrast to 46% and
45% of organizations within the Americas and
EMEA, respectively. The number of organizations
without MFA enabled for their IAM root accounts
was also surprisingly high. JAPAC organizations
again performed poorly, with 27% of IAM root
accounts not using MFA functionality. Organizations
in EMEA and the Americas were not far behind,
with a respective 25% and 24% not enabling MFA
functionality for IAM root accounts.

MFA functionality greatly increases the security
of IAM accounts by requiring users to provide two
forms of authentication to prove their identity. The
failure to properly secure IAM root accounts can
have devastating consequences. If an attacker were to gain access to an IAM root account, they would
gain admin rights to all cloud resources available to that account. Attacks such as malware installation,
persistence operations, and data exfiltration would be trivial.

Of note, analysis of Azure
environments did not reveal a
detectable measurement of user
account policy violations, such as
inactive user access or use of expired
keys. This is likely due to Azure’s
usage of Azure Active Directory®
(AD) to control and manage user
accounts. Prisma Cloud added general
availability for Azure AD support in
August 2020. Unit 42 researchers
will continue to monitor Azure IAM
findings as customers begin to make
use of this new functionality within
the Prisma Cloud feature set.

 Table 3: AWS MFA Enablement by Region

MFA Features Americas EMEA JAPAC Global

AWS MFA not enabled for IAM users 46% 45% 58% 47%

AWS MFA is not enabled on root account 24% 25% 27% 24%

https://docs.paloaltonetworks.com/prisma/prisma-cloud/prisma-cloud-release-notes/prisma-cloud-release-information/features-introduced-in-2020/features-introduced-in-august-2020

 P a l o A l t o N e t w o r k s | U n i t 4 2 | C l o u d T h r e a t R e p o r t , 2 H 2 0 2 0 1 8

03
Cloud Infrastructure Threats
Cloud environments are being targeted by cybercrime groups focused on malicious cryptomining
operations, also called cryptojacking. These operations remain among the highest profile attacks
against cloud infrastructure. Unit 42 research shows that cryptojacking affects at least 23% of
organizations globally that maintain cloud infrastructure.

HACKER STORY
Unit 42 researchers are tracking a cryptojacking variant that is actively targeting
and scraping AWS credentials in parallel to its mining operations. The tool,
called TeamTnT, searches the compromised system for AWS credentials ~/.aws/
credentials and AWS configurations ~/.aws/config. If either or both of these files
are found, they are uploaded to a C2 server. This type of functionality exposes
attackers’ evolving efforts to further gain access to cloud environments.

Attackers typically use public Monero (XMR) mining pools, or in some instances a private mining
pool, to perform their mining operations. The public mining operations can be tracked via Prisma™
Cloud, and Unit 42 researchers continue to update Palo Alto Networks URL Filtering, a Next-
Generation Firewall subscription, to block connections to these networks as they appear.

https://www.cadosecurity.com/2020/08/17/teamtnt-the-first-crypto-mining-worm-to-steal-aws-credentials/

 P a l o A l t o N e t w o r k s | U n i t 4 2 | C l o u d T h r e a t R e p o r t , 2 H 2 0 2 0 1 9

Unit 42 researchers have found that attackers typically use misconfigured cloud infrastructure to
initially compromise cloud instances. These misconfigurations lead to the bypass of firewalls, AWS
Security Groups, Amazon and Google Virtual Private Clouds (VPCs), or Azure Virtual Network (VNet)
policies, and can expose an organization’s cloud environment. Figure 13 illustrates how an attacker
scans cloud environments for exposed Docker daemon APIs. Upon detection, the attacker installs
mining software on the exposed Docker daemon instance.

Container instance Container instance

Docker daemon API

Security Boundary

XMRig mining
software install

VM firewall

Cryptojacking
mining traffic
(TCP port 443)

Internet

Attackers scan for
Docker daemon API

(TCP Port 2375)

VM firewall rules:

Ingress: TCP 22, 80,
443, 2375, and 8080

Egress: All

Figure 13: Attacker exploiting an exposed instance via permissive firewall rules

By using cloud network security boundaries in the same manner as legitimate users, attackers can
hide in the noise of the network. In figure 13, all mining network traffic is configured to use TCP
port 443, thus obscuring attackers’ tracks within legitimate network traffic noise. If an attacker
were to use unconventional communication channels, they would be easier to identify and have a
higher risk of detection.

Cryptojacking Operations
Analyzing a dataset from June through August 2020, Unit 42 researchers identified cloud
organizations with persistent network connections to public cryptomining pools. During this 90-
day period, the researchers looked for network connections originating from cloud organizations
with destinations to any of the 46 most popular XMR mining pools. They found that cloud
organizations communicated with 185 unique addresses.

Each of the following URLs should be added to organizational blocklists, including cloud
environments. Table 4 lists the 46 most popular Monero public mining pools used in this research.

 P a l o A l t o N e t w o r k s | U n i t 4 2 | C l o u d T h r e a t R e p o r t , 2 H 2 0 2 0 2 0

Most Common Public Mining Pool

Of the most common destination connections, Unit 42 researchers found the most active mining
pool was xmr.nanopool[.]org. This domain accounted for 20% of the total connections.
minercircle[.]com had the second most, at 12% of connections, and cryptmonero[.]com and
usxmrpool[.]com tied for the third most, at 11% of connections. xmrpool[.]xyz came in fifth with
9% of connections. Table 5 shows the top 10 public mining pools based on network traffic.

 Table 4: URLs Organizations Should Add to Block Lists

alimabi[.]cn minexmr[.]com moneropool[.]com stratum.f2pool[.]com xmr.prohash[.]net

bohemianpool[.]com monero.crypto-pool[.]fr moneropool[.]nl supportXMR[.]com xmr.suprnova[.]cc

cryptmonero[.]com monero.hashvault[.]pro moriaxmr[.]com teracycle[.]net xmrpool[.]de

dwarfpool[.]com monero.lindon-pool[.]win myo-xmr[.]com usxmrpool[.]com xmrpool[.]eu

ethereumwallet[.]com[.]au monero.miners[.]pro pool.t00ls[.]ru viaxmr[.]com xmrpool[.]net

iwanttoearn[.]money monero.riefly[.]id pool.xmr[.]pt xmr.2miners[.]com xmrpool[.]xyz

mine.moneropool[.]com monero[.]us[.]to pooldd[.]com xmr.crypto-pool[.]fr —

minemonero[.]gq monero[.]hashvault[.]pro poolto[.]be xmr.mypool[.]online —

minercircle[.]com monerohash[.]com ratchetmining[.]com xmr.nanopool[.]org —

minergate[.]com moneroocean[.]stream sheepman[.]mine[.]bz xmr[.]org[.]uk —

 Table 5: Top 10 Public Mining Pools

Mining Pool % of Connections Count Total Packets Total Bytes

xmr.nanopool[.]org 20% 99,468 41,932,290 13.6 GB

minercircle[.]com 12% 58,922 6,904,587 881 MB

cryptmonero[.]com 11% 56,253 1,668,445 216 MB

usxmrpool[.]com 11% 55,217 7,336,290 881 MB

xmrpool[.]xyz 9% 42,231 16,197,889 4.05 GB

teracycle[.]net 6% 29,563 7,969,380 1.5 GB

monero.hashvault[.]
pro

6% 29,417 21,565,838 18.3 GB

iwanttoearn[.]money 5% 24,583 29,225,318 9.9 GB

moriaxmr[.]com 3% 14,584 2,696,015 1.06 GB

moneroocean[.]stream 1% 6,169 816,334 626 MB

 P a l o A l t o N e t w o r k s | U n i t 4 2 | C l o u d T h r e a t R e p o r t , 2 H 2 0 2 0 2 1

Upon analyzing the network traffic, Unit 42
researchers found that while xmr.nanopool[.]org
contained the highest number of total connections,
it came in second when looking at the total volume
of traffic. xmr.nanopool[.]org generated 13.6
GB of traffic, where monero.hashvault[.]pro
generated 18.3 GB of traffic with only 6% of the total
connections. Higher total byte volumes indicate
mining services are spending more time mining
and not reconnecting or refreshing their network
sessions. Unit 42 researchers believe that the
connections with higher traffic volumes indicate a
more established and resilient mining operation by
the attackers within the cloud environment.

Most Common Port Usage

Unit 42 researchers also looked at the overall
network connection traffic destined for public
mining infrastructure. Ports 443 and 80, the
most common ports used to connect to mining pool infrastructure, saw the highest total network
connections and the highest total traffic volume. Port 443 led with 52% of the total connections and
the largest total traffic volume at 48.5 GB. Port 80 came in second, accounting for nearly 37% of the
total network connections and 8.7 GB of transferred network traffic.

Remediating Cryptojacking

Significant mitigation efforts must be
made upon identifying public mining
operations. Simply removing the mining
software and redeploying the cloud
resources is not enough. A detailed
investigation into the compromised
cloud resource must begin. Unit 42
researchers recommend identifying
any and all misconfigurations,
vulnerabilities, or initial compromise
events that led to a cloud resource
compromise. These findings must be
mitigated prior to redeployment of
the cloud infrastructure; otherwise,
reinfection is highly likely.

HACKER STORY
The Unit 42 research team dove into a wormable cryptojacking variant it calls
Cetus. Cetus, which has connections to the worm TeamTnT, targets and scans
for exposed Docker daemons. Cetus is not the first cryptojacking worm, but what
makes it powerful is its impersonation of legitimate Docker processes. Using the
legitimate name “Portainer” (a Docker UI tool for managing Docker containers),
the worm downloads the scanning tool “masscan” and an XMRig variant called
“docker-cache”—also a legitimate name for a Docker binary. After installing the
mining software, Cetus configures the software to use port 443 to communicate
with the public mining pool. This operation displays the traits of process and traffic
obfuscation as well as network reconnaissance along with cryptojacking operations.

https://unit42.paloaltonetworks.com/cetus-cryptojacking-worm/
https://unit42.paloaltonetworks.com/cetus-cryptojacking-worm/
https://www.trendmicro.com/vinfo/hk-en/security/news/virtualization-and-cloud/coinminer-ddos-bot-attack-docker-daemon-ports

 P a l o A l t o N e t w o r k s | U n i t 4 2 | C l o u d T h r e a t R e p o r t , 2 H 2 0 2 0 2 2

Other ports of interest were ports 8080 and 9997. While port 8080 only maintained 4% of the total
connections, it transferred 152 MB of network traffic, and port 9997 had a tiny 0.3% of the total
traffic but managed to transfer 8.5 MB of network traffic.

This research shows the vast majority of cryptojacking operations use standard network protocols
to perform their functionality (i.e., ports 443, 80, and 8080). It is also interesting to note that port
3333, the default port configuration for the most common Monero mining software XMRig, only
contained a total of 77 network connections, or 0.01% of the total traffic. This shows that the majority
of cryptojacking operations are using custom configurations for their mining operations. This
can further indicate that attackers may have at least some knowledge of the cloud environment’s
configuration, or even its architecture, allowing them to disguise and maintain operations.

 Table 6: Ports Most Commonly Used for Mining

Destination Port Count Total Packets Total Bytes % of Total

443 256,723 109,928,643 48.58 GB 52%

80 180,206 32,573,027 8.72 GB 37%

25 20,289 189,312 11 MB 4%

8080 15,089 1,111,362 152 MB 3%

137 11,610 200,173 15 MB 2%

123 2,516 25,635 835 KB 0.51%

389 1,619 18,946 708 KB 0.33%

9997 1,583 1,422,655 85 MB 0.32%

53 770 56,868 2.3 MB 0.16%

20304 728 15,930 1.3 MB 0.15%

445 490 3,546 17,589 0.1%

Top 5 Traffic Destination Countries

The mining pools connected to by cloud organizations were more often located in the United States,
with 69% of all public mining traffic resolving to US systems. The Netherlands was second with
11%, and Germany was third with 9%.

This geographic breakdown appears to fit very closely to research performed on the mapping of
Monero node topology and distribution, which detailed the geographic locations of known Monero
nodes throughout the world. The research lists the United States as containing 51% of the heavily
used Monero mining pools as well as 33% and 37% of the light- and medium-used mining pools.
Germany, Netherlands, Canada, and France are also present in the top eight.

This corroboration of data allows Unit 42 researchers and cloud security personnel to more
accurately enable defensive countermeasures to detect cryptojacking operations and prevent cloud
resource misuse by attackers.

https://github.com/xmrig/xmrig
https://eprint.iacr.org/2019/411.pdf

 P a l o A l t o N e t w o r k s | U n i t 4 2 | C l o u d T h r e a t R e p o r t , 2 H 2 0 2 0 2 3

 Table 7: Top Countries Where Mining Pools Connected to Cloud Organizations

Destination Country Connections Total Packets Total Bytes % of Total

United States 339,210 99,419,568 43.8 GB 69%

Netherlands 54,666 1,712,526 2.35 GB 11%

Germany 45,271 32,597,370 11.2 GB 9%

Canada 29,480 7,967,183 1.55 GB 6%

Ireland 21,130 3,827,620 713 MB 4%

Indonesia 1,799 39,759 11.6 MB 0.36%

France 791 23,356 4.05 MB 0.16%

Australia 742 17,061 4.1 MB 0.15%

United Kingdom 84 64,492 3.5 MB 0.02%

Russia 13 1,596 104 KB 0.002%

Cryptojacking Tool Spotlight
For this report, Unit 42 researchers focused on a cryptojacking tool called Kinsing, which is a
GoLang H2miner cryptojacking operation first reported by Alibaba’s cloud security team. This
cryptojacking operation targets exposed Docker daemon API instances, evades security tools from
Aliyun and Tencent, and performs network scanning operations using a tool called masscan, giving
it worm-like capabilities. Once installed upon the compromised system, Kinsing will capture
system information; download, install, and run masscan; and finally download and install the
mining software kdevtmpdsi, which is a variation of the XMRig mining platform.

Of note, the malware authors inserted parts of William Shakespeare’s “Hamlet” within the code.
This is likely designed to distract, confuse, or taunt malware analysts, or to provide excessive
noise to limit automated analytic tools. Additional identification markings of Kinsing include the
creation of the temporary directory /tmp/kinsing. If a system contains this directory, it is likely
that system is infected with Kinsing.

Table 8 shows known Kinsing malware samples performing network connections to the following
hard-coded IP addresses with a specific functionality.

https://www.alibabacloud.com/blog/new-outbreak-of-h2miner-worms-exploiting-redis-rce-detected_595743
https://github.com/robertdavidgraham/masscan

 P a l o A l t o N e t w o r k s | U n i t 4 2 | C l o u d T h r e a t R e p o r t , 2 H 2 0 2 0 2 4

 Table 8: Kinsing Malware Samples Connecting to Hard-Coded IP Addresses

IP Address Malware Function Country

45.10.88.102 Kinsing C2 Ukraine

91.215.169.111 Kinsing C2 Russia

139.99.50.255 Kinsing C2 Canada

46.243.253.167 Kinsing C2 Russia

195.123.220.193 Kinsing C2 Netherlands

178.170.189.5 kdevtmpfsi Mining Operations Netherlands

45.89.230.240 kdevtmpfsi Mining Operations Russia

106.15.38.249 kdevtmpfsi Mining Operations China

116.62.237.64 kdevtmpfsi Mining Operations China

116.62.241.154 kdevtmpfsi Mining Operations China

118.190.90.105 kdevtmpfsi Mining Operations China

120.79.193.21 kdevtmpfsi Mining Operations China

Unit 42 researchers were able to identify additional network communications originating from
within the United States, although these are considered to have an extremely low occurrence.
These connections were directed to the known Kinsing mining operation IP addresses in table 8.
However, researchers were not able to find network connections directed to the Kinsing C2 nodes.
This implies that the US-based cloud systems had been compromised and connected to the Kinsing
C2 nodes prior to the discovery of network connections to the mining nodes.

Attribution for this mining software is currently unclear. However, it is interesting to note that the
actors behind this tool have established the majority of their C2 systems within Russia, Ukraine,
and the Netherlands. Interestingly, the majority of the systems for running the mining operation
are located in China. This is likely done so that the network traffic for the mining operation would
be less conspicuous (as most of the victims reside in the JAPAC region), whereas traffic back to the
C2 system countries could raise suspicion. See figure 13 for an illustration of how attackers can use
legitimate network traffic protocols to obscure their malicious actions. In the current example,
by directing the majority network traffic to local or same region systems, attackers can further
obfuscate malicious traffic patterns to evade detection.

 P a l o A l t o N e t w o r k s | U n i t 4 2 | C l o u d T h r e a t R e p o r t , 2 H 2 0 2 0 2 5

Battle with Known Threat Actors

Unit 42 researchers found evidence of a resource battle between Kinsing mining operations and that
of TeamTnT mining operations and the Docker cryptojacking worm Cetus. In the Unit 42 blog on
Cetus, researchers identified an XMR wallet address, 85X7JcgPpwQdZXaK2TKJb8baQAXc3zBsnW7JuY
7MLi9VY Samf4bFwa7SEAK9Hgp2P53npV19w1zuaK5bft5m2NN71CmNLoh. This address is used in both
Cetus and TeamTnT operations.

Interestingly, TeamTnT, Cetus and Kinsing all share very similar tactics, techniques and procedures
(TTPs). Both tools have scanned networks for exposed Docker daemon APIs running on ports 2375,
2376, and 2377, using masscan, TeamTnT has also used used the open-source tool pnscan for
scanning; both bypass Aliyun and Tencent security software; and both have historically targeted
Redis instances. Finally, TeamTnT has been reported to have copied code from Kinsing that allows
the malware to search a compromised system for AWS credentials, ~/.aws/credentials, and AWS
configurations, ~/.aws/config. If either or both of these files are found, they are uploaded to a C2
server. This type of functionality exposes attackers’ evolving efforts to further gain access to cloud
environments.

There is also additional information linking Kinsing to SaltStack, an open source, Python-
based management platform. The connections between these two also include a shared XMR
wallet address—different from the one shown above—and the incorporation of “Hamlet” in the
malware’s source code.

Given the similarities between two distinct malware families, Kinsing and TeamTnT, there is
a great amount of evidence that TeamTnT has been directly targeting Kinsing operations to
increase its own claim to compromised resources. While not all of TeamTnT’s TTPs match those of
Kinsing, the clear facts are that TeamTnT is directly using Kinsing code and then hijacking Kinsing
compromised systems. The long battle for cryptojacking resources appears to have no end in sight.

https://www.cadosecurity.com/2020/08/17/teamtnt-the-first-crypto-mining-worm-to-steal-aws-credentials/
https://unit42.paloaltonetworks.com/cetus-cryptojacking-worm/
https://github.com/robertdavidgraham/masscan
https://github.com/ptrrkssn/pnscan
https://www.cadosecurity.com/2020/08/17/teamtnt-the-first-crypto-mining-worm-to-steal-aws-credentials/
https://redcanary.com/blog/kinsing-malware-citrix-saltstack/

 P a l o A l t o N e t w o r k s | U n i t 4 2 | C l o u d T h r e a t R e p o r t , 2 H 2 0 2 0 2 6

04
Conclusion and Recommendations
IAM Best Practices
IAM governance is a critical aspect of cloud security, and DevOps and security teams must treat it as
such. While cloud providers deliver a good baseline for implementing a least-privileged approach
to permissions, this breaks down as cloud adoption scales across multiple providers. While a
comprehensive IAM strategy is outside the scope of this particular report, Unit 42 researchers
recommend starting to look holistically at all your cloud accounts, keeping in mind the following
key steps:

1. Minimize the use of administrator credentials. The number of users with admin access should
be minimized, and admin credentials should only be used when absolutely necessary. The less
frequently admin credentials are used, the less likely they are to get compromised.

2. Simplify user management by using group or role. Users in the same project tend to have similar
permission requirements and can be placed in the same group or role. Instead of managing each
user’s permission policy, system admins should manage the permission policy of each group or role.

3. Enable MFA. MFA provides another layer of security in case the primary password is compromised.

4. Configure a strong password policy. Passwords still matter even in the age of more common
MFA. The National Institute of Standards and Technology (NIST) recommends an eight-character
minimum length and skipping character composition rules as they are painful for users. When MFA
is enabled, passwords should only be changed if there is evidence of compromise. For additional
guidance, see NIST SP 800-63-3.

5. Rotate access tokens regularly. Access tokens should be assigned short expiration periods to
minimize the risk of compromised credentials. This is different from standard user accounts.

6. Monitor IAM APIs. All major CSPs have services to monitor IAM usage. These services help identify
abnormal activities, such as brute-force attacks and logging from unrecognized devices or locations.

7. Grant least-privileged access. Only grant the least amount of permissions needed for a job. This
will ensure that if a user or resource is compromised, the blast radius is reduced to only those few
things the entity was permitted to do. This is an ongoing task that is best automated.

8. Auto-remediate excessive privileges. Entitlement audits should not be manual processes in the
cloud. Environments change too rapidly, and the combination of user and machine roles makes
manual auditing completely ineffective at any scale.

9. Leverage cloud native security platforms. Managing a large number of privileged users with access
to an ever-expanding set of sensitive resources can be challenging. On top of that, cloud resources
themselves have permission sets that need to be managed. Cloud native security platforms (CNSPs)
like Prisma Cloud help leverage the identity of cloud resources to enforce security policies and
ensure secure user behavior across multiple cloud environments.

10. Harden IAM roles. Never grant anonymous access (e.g., “Principal” : { “AWS” : “*” }) to any IAM
role. Make role names difficult to guess by adding random strings. If the role is shared across AWS
accounts, enforce unguessable External ID as another layer of protection.

https://pages.nist.gov/800-63-3/
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://aws.amazon.com/blogs/security/how-to-use-external-id-when-granting-access-to-your-aws-resources/

 P a l o A l t o N e t w o r k s | U n i t 4 2 | C l o u d T h r e a t R e p o r t , 2 H 2 0 2 0 2 7

Cryptojacking Defense Best Practices
Protecting cloud infrastructure against cryptojacking starts with leveraging the aforementioned
identity best practices. While many cryptojacking attacks don’t involve sophisticated tactics or
techniques, Unit 42 researchers have discovered several worm variants that can periodically pull
new scripts from C2 servers. Additionally, cryptomining malware has been found to evolve and
perform additional functions outside of simple cryptomining operations—scanning operations,
proxy usage, and C2 operations are becoming more common. These evolutions, especially
regarding worm activity, allow mining operations to easily repurpose themselves to ransomware or
exfiltration-focused malware, further entrenching attackers deeper within the cloud environment.
These types of shape-shifting threats should not be ignored. The following is a list of best practices
organizations can use to guard against cryptojacking in their cloud infrastructure:

1. Authenticate all container service connections. Never expose a Docker daemon to the internet
without a proper authentication mechanism. Note that, by default, the Docker Engine is not exposed
to the internet.

2. Block all firewall ports by default. Use firewall rules to allow list the incoming traffic to a small set
of sources.

3 Maintain a set of trusted images and registries: In NIST SP 800-190 (Application Container
Security Guide), the section on countermeasures for major risks (Section 4) says: “Organizations
should maintain a set of trusted images and registries and ensure that only images from this set are
allowed to run in their environment, thus mitigating the risk of untrusted or malicious components
being deployed.”

4. Leverage threat intelligence feeds. Review network traffic for any connections to mining pools.

5. Invest in cloud native security platforms. Cloud security solutions, such as Prisma Cloud, can
identify malicious containers and prevent cryptojacking activities across all major CSPs.

Ready to Identify the Threats in Your Cloud?

Prisma Cloud analyzes more than 10 billion events every month. This analysis shows us that poor
configuration, permissive behaviors, and lack of policies lead to many openings for bad actors and
unidentified threats to exploit. By proactively detecting security and compliance misconfigurations
as well as triggering automated workflow responses, Prisma Cloud helps ensure you continuously
and securely meet the demands of your dynamic cloud architectures.

About
Prisma Cloud

Prisma™ Cloud is a comprehensive cloud native security platform with the industry’s broadest
security and compliance coverage—for applications, data, and the entire cloud native technology
stack—throughout the development lifecycle and across hybrid and multi-cloud deployments.
The integrated Prisma Cloud approach enables security operations and DevOps teams to stay agile,
collaborate effectively, and accelerate cloud native application development and deployment securely.

https://unit42.paloaltonetworks.com/graboid-first-ever-cryptojacking-worm-found-in-images-on-docker-hub/
https://unit42.paloaltonetworks.com/cetus-cryptojacking-worm/
https://unit42.paloaltonetworks.com/graboid-first-ever-cryptojacking-worm-found-in-images-on-docker-hub/
https://unit42.paloaltonetworks.com/cryptojacking-docker-images-for-mining-monero/
https://unit42.paloaltonetworks.com/rockein-the-netflow/
https://csrc.nist.gov/publications/detail/sp/800-190/final

Unit 42

Unit 42 is the global threat intelligence team at Palo Alto Networks and a recognized authority on
cyberthreats, frequently sought out by enterprises and government agencies around the world.
Our analysts are experts in hunting and collecting unknown threats as well as completely reverse-
engineering malware using code analysis. With this expertise, we deliver high-quality, in-depth
research that provides insight into tools, techniques, and procedures threat actors execute to
compromise organizations. Our goal is to provide context wherever possible, explaining the nuts
and bolts of attacks, as well as who is executing them and why, so that defenders globally can gain
visibility into threats to better defend their businesses against them.

Methodology
All research took place from May to August 2020 and included the Americas, EMEA, and JAPAC regions.
IAM research was conducted using publicly available data from GitHub. Unit 42 researchers used the
GitHub Search API to retrieve files that might contain AWS Account Resource Numbers (ARNs). The
researchers then performed data mining offline to extract potential AWS account IDs and role names
from the GitHub files. Each valid AWS ID was then checked with a list of role names using AWS APIs.
These findings may not be representative of the entire base of CSP customers.

Palo Alto Networks Prisma Cloud

Prisma Cloud trend data utilizes multiple threat intelligence sources. Unit 42 researchers utilized
proprietary data sources to gather organizational alert and event data. This data was anonymized,
analyzed, and then compared to the results of previous cloud threat report analytics to produce
trend information. Datasets from GitHub were also used to provide analysts with third-party data to
bolster and validate the proprietary data analytics results.

Palo Alto Networks WildFire

The cloud-based WildFire® malware prevention service employs a unique multi-technique
approach, combining dynamic and static analysis, innovative machine learning techniques, and a
groundbreaking bare metal analysis environment to detect and prevent even the most evasive threats.

Palo Alto Networks AutoFocus

The AutoFocus™ contextual threat intelligence service provides the intelligence, analytics, and
context required to understand which attacks require immediate response, as well as the ability to
make indicators actionable and prevent future attacks.

GitHub

GitHub is the largest public/private source code repository for software development version
control using Git. The GitHub searching API is an easy way to find topics, commits, or code across
all the repositories on GitHub.

Authors

Jay Chen, Nathaniel “Q” Quist, and Matthew Chiodi

3000 Tannery Way
Santa Clara, CA 95054

Main: +1.408.753.4000
Sales: +1.866.320.4788
Support: +1.866.898.9087

www.paloaltonetworks.com

© 2020 Palo Alto Networks, Inc. Palo Alto Networks is a registered
trademark of Palo Alto Networks. A list of our trademarks can be found at
https://www.paloaltonetworks.com/company/trademarks.html. All other
marks mentioned herein may be trademarks of their respective companies.
Palo Alto Networks assumes no responsibility for inaccuracies in this document
and disclaims any obligation to update information contained herein. Palo Alto
Networks reserves the right to change, modify, transfer, or otherwise revise this
publication without notice. unit-42-cloud-threat-report-2h-2020-100120

