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esearchers have used machine learning (ML) in recent years to 
generate highly realistic fake images and videos known as 
“deepfakes.” Artists, pranksters, and many others have subse-

quently used these techniques to create a growing collection of audio 
and video depicting high-profile leaders, such as Donald Trump, Barack 
Obama, and Vladimir Putin, saying things they never did. This trend has 
driven fears within the national security community that recent advances in 
ML will enhance the effectiveness of malicious media manipulation efforts 
like those Russia launched during the 2016 U.S. presidential election. 

These concerns have drawn attention to the disinformation risks ML 
poses, but key questions remain unanswered. How rapidly is the technolo-
gy for synthetic media advancing, and what are reasonable expectations 
around the commoditization of these tools? Why would a disinformation 
campaign choose deepfakes over more crudely made fake content that 
is sometimes equally as effective? What kinds of actors are likely to adopt 
these advances for malicious ends? How will they use them? Policymak-
ers and analysts often lack concrete guidance in developing policies to 
address these risks.

This paper examines the technical literature on deepfakes to assess 
the threat they pose. It draws two conclusions. First, the malicious use of 
crudely generated deepfakes will become easier with time as the technol-
ogy commodifies. Yet the current state of deepfake detection suggests that 
these fakes can be kept largely at bay.

Second, tailored deepfakes produced by technically sophisticated ac-
tors will represent the greater threat over time. Even moderately resourced 

Executive Summary 
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campaigns can access the requisite ingredients for generating a custom deepfake. 
However, factors such as the need to avoid attribution, the time needed to train an 
ML model, and the availability of data will constrain how sophisticated actors use 
tailored deepfakes in practice. 

Based on this assessment, the paper makes four recommendations:

•	 Build a Deepfake “Zoo”: Identifying deepfakes relies on rapid access to 
examples of synthetic media that can be used to improve detection algo-
rithms. Platforms, researchers, and companies should invest in the creation of 
a deepfake “zoo” that aggregates and makes freely available datasets of 
synthetic media as they appear online. 

•	 Encourage Better Capabilities Tracking: The technical literature around 
ML provides critical insight into how disinformation actors will likely use 
deepfakes in their operations, and the limitations they might face in doing 
so. However, inconsistent documentation practices among researchers 
hinders this analysis. Research communities, funding organizations, and 
academic publishers should work toward developing common standards for 
reporting progress in generative models.

•	 Commodify Detection: Broadly distributing detection technology can in-
hibit the effectiveness of deepfakes. Government agencies and philanthrop-
ic organizations should distribute grants to help translate research findings 
in deepfake detection into user-friendly apps for analyzing media. Regular 
training sessions for journalists and professions likely to be targeted by these 
types of techniques may also limit the extent to which members of the public 
are duped.

•	 Proliferate Radioactive Data: Recent research has shown that datasets 
can be made “radioactive.” ML systems trained on this kind of data gen-
erate synthetic media that can be easily identified. Stakeholders should 
actively encourage the “radioactive” marking of public datasets likely to 
train deep generative models. This would significantly lower the costs of 
detection for deepfakes generated by commodified tools. It would also 
force more sophisticated disinformation actors to source their own datasets 
to avoid detection. 
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Introduction

esearchers have used machine learning (ML) in recent years to 
generate highly realistic fake images and videos known as “deep-
fakes.” Artists, pranksters, and many others have subsequently 

used these techniques to create a growing collection of audio and video 
depicting high-profile leaders, such as Donald Trump, Barack Obama, and 
Vladimir Putin, saying things that they never did.1  

This trend has driven fear within the national security community that 
states, political parties, and malicious actors will leverage recent advances 
in ML to enhance the effectiveness of their media manipulation efforts. A 
number of cases in which these technologies have been weaponized to 
generate synthetic non-consensual pornography bolster these concerns.2  
Policymakers and analysts in the national security community foresee the 
integration of cutting-edge ML technologies into large-scale information 
warfare efforts like the one Russia launched during the 2016 U.S. presiden-
tial election.3  

Public discourse around this risk has centered on a broad, amorphous 
fear that synthetic media will erode the ability to discern the real from the 
fake. One New York Times op-ed writer encapsulated the framing in 2019: 
“Deepfakes Are Coming. We Can No Longer Believe What We See.”4  
Similarly broad concerns have shaped government discourse on these 
issues. After listing some possible malicious uses at a hearing on the matter, 
the chairman of a congressional committee acknowledged, “one does not 
need any great imagination to envision even more nightmarish scenarios 
that would leave the government, the media, and the public struggling to 
discern what is real and what is fake.”5 

R
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These generalized fears have galvanized attention around the technology’s 
disinformation risks. However, a lack of answers to key questions has left policy-
makers and analysts without clear guidance in developing policies to address these 
risks. How rapidly is the technology for synthetic media advancing, and what are 
reasonable expectations around the commoditization of these tools? Why would 
a disinformation campaign choose to distribute deepfakes instead of more crudely 
made fake content sometimes equally as effective? What kinds of actors are likely to 
adopt these advances for malicious ends? How will they use them? 

Through a review of technical literature in the field of ML, this paper answers 
these questions to offer an assessment of the threat deepfakes pose. 

In this paper, the term “deepfakes” refers to the broad scope of synthetic images, 
video, and audio generated through recent breakthroughs in the field of ML, spe-
cifically in deep learning. This term is inclusive of ML techniques that seek to modify 
some aspect of an existing piece of media, or to generate entirely new content. While 
this paper emphasizes advances in neural networks, its analysis is relevant for other 
methods in the broader field of ML. The term “deepfakes” excludes the wide range 
of techniques for manipulating media without the use of ML, including many existing 
tools for “cutting and pasting” objects from one image to another. 

This paper is organized in three parts. The first one lays out a framework for 
assessing the potential impact of deepfakes in the media manipulation domain. 
The second part reviews the current state of the art, both in the creation of synthetic 
media and in the detection of media generated by these techniques. The third part 
brings together various trends in the research field to predict how disinformation 
campaigns might use these synthetic media techniques going forward. This paper 
concludes by offering policy recommendations based on this analysis. 

Malicious actors might enhance their influence operations with ML in many 
ways. The focus of this paper is squarely on synthetic images, audio, and video, cur-
rently most prominent in the public eye and of concern to national security scholars 
and policymakers. This paper excludes a review of technologies like conversational 
systems, which might be used to drive realistic bot identities on social media. It also 
eschews a close examination of ML-driven text generation, which could quickly 
populate “fake news” websites and forge written documents. However, the general 
framework offered in this paper could also be applied to understand the impact 
of these areas of research on disinformation threats; it would be valuable to do so 
going forward. 
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L has a wide range of possible applications. Computer vision—
the subfield of ML that gives computers the ability to process 
and comprehend imagery—can be used to take on tasks as 

disparate as drone piloting and understanding gender bias in cinema.6 
Within a single application, ML can be configured to handle a range of 
different subtasks. Consider the application of ML in the context of an 
automobile. ML might be applied to assist in navigating the vehicle to its 
destination, avoiding unexpected obstacles on the road, modeling driver 
behavior for marketing purposes, some subset of these tasks, or none. 

Given the wide range of potential ML applications, asking whether 
ML could be applied in a specific domain or to a particular problem often 
proves unhelpful. It is always possible to construct a scenario in which 
the technology might be used, for better or for worse. But this abstract 
speculation does little to reveal how ML will be used in practice: the fact a 
technology can do something does not mean it will be put to that purpose. 

A deeper understanding of individual and organizational incentives 
is needed to understand how ML will actually be used. These incentives 
will determine if ML is an attractive technology to adopt and how it will be 
implemented. 

This section of the paper lays out the incentives shaping whether and 
how disinformation campaigns will use deepfakes in their operations. 
First, it summarizes what is currently known about how disinformation 
campaigns spread false information, arguing that influence operations 
weigh deciding factors like cost and impact when choosing what kinds of 
content to distribute. It then examines these deciding factors in the context 
of deepfakes, laying out three key drivers influencing how disinformation 
campaigns use the technology in practice. 

A Framework for 
Threat Assessment

1

M
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PROPAGANDISTS ARE PRAGMATISTS
Online propagandists are pragmatists. They seek to wield the greatest degree of 
social and political influence at the lowest possible cost. Currently, these incen-
tives lead disinformation campaigns to distribute crude photo edits and copied 
images, rather than high-production hoaxes.

The effort by the Internet Research Agency—an organization backed by the 
Russian government—to interfere in the 2016 U.S. presidential election is a pro-
totypical case.7 The IRA’s content emphasized scale over quality. It posted large 
numbers of images and videos that were cheaply crafted or taken from elsewhere 
on the web.8 Numerous other online influence campaigns have exhibited a similar 
operational posture.9

Perpetrators of disinformation campaigns have not made a significant invest-
ment in crafting high-quality hoaxes, with or without ML. One explanation is that 
cheaper techniques of content production have already proven successful; crudely 
editing image and video, as well as appropriating content from elsewhere and 
attaching a false description, are effective tactics for spreading false narratives 
throughout the web.10 Online influence campaigns may not even need a faked 
image or video to push a message. Images featuring slogans, informational graph-
ics, or purely symbolic imagery were some of the most widely shared content of the 
2016 election interference campaign.11  

The fact that disinformation campaigns rely on cheap, rough-and-ready ways 
of producing content suggests that practical considerations figure into the types of 
content they spread. There is no need to spend additional resources creating an 
elaborate fake video when simply copying an image from elsewhere and mislead-
ingly captioning it will achieve the same impact. 

But the past may not be a good guide to the future. ML technologies are rapidly 
evolving in ways that will change whether or not disinformation campaigns invest in 
creating high-quality fakes. 

KEY DRIVERS SHAPING DEEPFAKE USE
What practical considerations must disinformation campaigns weigh in deciding 
whether to use deepfakes in their operations? Three significant factors will shape 
their use of the technology: the persuasive capacity of ML-driven synthetic media, 
the operational requirements of implementing the technology, and the novel risks 
of detection raised by using deepfakes.

Benefit: Persuasive Capacity
Deepfakes offer the online propagandist a unique opportunity to create hoaxed 
content. ML-driven fakery can produce strikingly realistic depictions of individuals 
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and situations. Importantly, deepfakes can reproduce various subtle details—such 
as convincing facial tics or realistic shadows for a fake object pasted into an im-
age—that make it challenging to identify an image or video as a hoax. At the very 
least, such fakes may sow sufficient doubt about a target individual or situation to 
create confusion and suspicion.12 

But this increased realism does not necessarily make deepfakes a clear-cut 
choice for disinformation campaigns. A perfect simulation of a voice or facial move-
ment does not inherently mean a hoax will be believed and shared.

The internet is rife with examples of crudely produced fakes that are widely cir-
culated and taken as true. Consider the 2019 video of Speaker of the House Nan-
cy Pelosi that spread extensively through social media, purporting to show Pelosi 
either drunk or suffering from some kind of mental deterioration. No ML was used 
in this case. The video was produced simply by slowing down a real video of Pelosi 
speaking at an event.13  

Malicious actors clearly do not need to achieve visual realism for their hoaxes 
to succeed. Instead, playing on “motivated reasoning”—the tendency to accept in-
formation confirming pre-existing prejudices—may be a more important factor in the 
success of a hoax image or video, rendering the enhanced visuals possible through 
ML irrelevant for the propagandist. This makes deepfakes a less attractive method 
for spreading false narratives, particularly when weighing the costs and risks of 
using the technology. 

Cost: Operational Requirements
Disinformation campaigns cannot adopt ML without incurring certain operational 
costs. As a general matter, the creation of high-performance AI systems requires 
access to a sufficient training data (enabling a machine to learn how to accom-
plish a given task) and computational power (the hardware needed to execute 
the training process). Depending on what the deepfake depicts, there may be sig-
nificant expense in acquiring the training data, structuring it properly, and running 
the training process. A perpetrator may also need specialized expertise, making 
deepfakes a more expensive option than the crude media editing and copying 
currently characterizing online disinformation operations.

On the other hand, deepfake technologies are increasingly integrated into soft-
ware platforms that do not require special technical expertise. Easy-to-use, ML-driv-
en software that facilitates a “face swap”—removing one face from an image or 
video and inserting another—is increasingly available for users with no technical 
expertise.14 Other routine transformations of images and video powered by ML are 
likely to follow. This trend toward democratization may reduce or effectively elim-
inate many of the operational costs otherwise making deepfakes an unattractive 
option for disinformation perpetrators. 
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Risks: Algorithmic Detection
Influence operations prefer to avoid public exposure. A political campaign caught 
using underhanded methods to manipulate online discourse may face public cen-
sure and legal action. A country found to be doing the same may face retaliation 
and sanction. Social media companies can “deplatform” an influence campaign 
when discovered, deleting accounts and otherwise hindering malicious actors’ 
access to users.15 At the very least, widespread knowledge about an ongoing influ-
ence effort may put an otherwise unsuspecting population on guard. 

Online influence operations may increase their risk of exposure by using deep-
fakes. The ML models for producing deepfakes can leave suspicious distortions in 
images, audio, and video that are often consistent across content distributed by an 
influence campaign. Deepfakes may therefore contain a kind of “fingerprint,” allow-
ing investigators to link together all media originating from a given disinformation 
campaign. Investigators, in turn, can trace the campaign to a specific source and 
alert the public. 

This poses a problem for influence campaigns because their success depends on 
wide distribution of their content through intermediaries, such as Facebook, Twitter, 
and YouTube. As fears over deepfakes have escalated, these platforms have created 
new policies prohibiting the use of certain kinds of synthetic media.16  These policies 
will use detection algorithms for enforcement, given the massive scale of content up-
loaded and shared on social media. By choosing to distribute deepfakes, influence 
operations run the risk of their messaging being quickly taken down or flagged as 
suspicious on these platforms. 

These increased risks of exposure and detection may make deepfakes a less at-
tractive means of spreading false narratives than existing methods. Manually copying 
content from many sources and editing media as needed may avoid the consistent 
“fingerprints” left by ML models. Diversity of content makes it more challenging to 
build algorithms that identify disinformation in a vast stream of social media activity. 
Similarly, appropriating content and re-contextualizing it in a false or misleading 
way—a tactic seen in many disinformation efforts—may present no consistent pat-
terns that allow for effective, automated filtration.

The adoption of deepfakes for disinformation purposes will therefore depend 
on more than the costs of producing this content and its likely impact on the target 
audience. It will also depend on the speed of improvement in deepfake detection 
and the adoption of detection technologies by online platforms, governments, and 
everyday users. 
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APPLYING THE ANALYSIS
The decision of malicious actors to adopt deepfakes for disinformation efforts will 
be influenced by the nature of ML technology. Three key factors determine wheth-
er and how online influence operations will use deepfakes:

•	 What can be depicted in a deepfake. Disinformation actors will adopt 
ML only if it creates synthetic media likely to shape public perceptions or 
cast doubt in the minds of a target audience. 

•	 The computational, human, and data requirements of generating 
deepfakes. High costs of production will make deepfakes less attractive 
relative to manual methods, while low production costs will make them more 
attractive. 

•	 The effectiveness of detection systems. The ability to detect deepfakes at 
low cost makes ML less attractive to disinformation actors, while ineffectual 
or high costs to detection make it more attractive. 

The next section of this paper considers these variables, examining the costs 
of deepfake generation, the scope of what media can be generated through ML 
methods, and the state of play in deepfake detection. Based on this analysis, 
the final section offers predictions about the evolution of the ML threat in media 
manipulation.
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he state of the ML field will define the persuasive capacity, oper-
ational requirements, and detection risks of deepfakes. This section 
examines the current state of play in deepfake creation and deep-

fake detection—the most cutting-edge results seen in the lab, as well as 
trends in the adaptation of these research findings into practical tools for 
use in the field. Reviewing the research literature provides vital clues as 
to the actual threat from deepfakes and how malicious actors will use this 
technology to spread disinformation.

DEEPFAKE CREATION
Deepfakes must meet two criteria in order for online influence campaigns 
to use them. First, the operational costs of producing a deepfake—buy-
ing hardware, acquiring data, and hiring expert engineers—must not 
be overly onerous. Second, deep generative models must be able to 
successfully produce the faked media an influence campaign seeks to 
distribute. 

This section explores the recent technical literature in ML in order to 
assess deepfakes against these two criteria. To provide context for this re-
view, this section first explains how deepfakes are generated. It then looks 
at the current state of the art in using ML to produce synthetic media. 

This is by necessity a limited review. There are no standardized prac-
tices for documenting the training data, models, and hardware used in 
an experiment. This makes it difficult to extract a comprehensive picture of 
the resource requirements for generating a state-of-the-art deepfake from 
the research literature. It is similarly challenging to determine the evolving 
trade-off between cost and quality in this domain: comparing images 

The State of Play2
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different deep generative networks produce is subjective, and researchers have 
criticized the standard performance measurements in recent years.17 Moreover, dif-
ferences in training datasets, hardware, and learning architectures across research 
publications make rigorous comparisons challenging.18 In spite of these issues, re-
cent research papers offer useful details about the resources necessary to produce 
cutting-edge synthetic media with ML. 

How to Build a Deepfake
Deepfakes are one specific application of ML, a field focused on the develop-
ment of algorithms that improve as they process data. This processing results in a 
trained “model,” a piece of software that ideally accomplishes the desired task. 
Consider the creation of an ML-driven face recognition system. The first step is to 
bring together a training dataset of both tagged photographs of faces and pho-
tographs containing no faces. During training, the ML algorithm learns from the 
provided examples to associate the images containing a face with the tag “face” 
and images without faces with the tag “no face.” If done properly, the resulting 
trained model can process previously unseen images to determine if they contain 
a face.

This model gains a limited “understanding” of what a face looks like through 
the training process. This level of “understanding” is referred to in the field as a 
representation. Representations are at the core of how ML creates synthetic media. 
Specifically, engineers create faked media using a generative model—a class of 
models that can produce novel data similar to that used to train the system in the first 
place. A generative model trained on images of faces will gain a representation of 
what a face looks like. This representation can then produce new images of faces 
that have never existed.  

“Deep learning”—from which “deepfake” draws its name—refers to a class of 
models used in ML known as neural networks; in recent years, they have proven 
to be some of the most successful means of constructing models. Researchers have 
taken special interest in generative models using deep learning—sometimes referred 
to as “deep generative models”—because of their proficiency at extracting repre-
sentations from different kinds of data. This ability allows them to produce strikingly 
good imitations of their original training data. 

The imitations produced by deep generative models are the “deepfakes” spark-
ing public concern. This is an extremely active area of research: numerous models 
have been proposed in recent years that adopt different approaches with varying 
strengths and weaknesses. Some of the most prominent examples focus on the gen-
eration of images, including Glow (2018), PixelCNN (2016), NADE (2016), and 
DRAW (2015).19 
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While the research community has focused on static imagery, deep generative 
models have also succeeded in creating synthetic audio and video. Examples in-
clude WaveNet, a deep generative model released in 2016 that is adept at mod-
eling audio data. WaveNet produces synthetic voices that sound significantly more 
natural and realistic than previous approaches.20 Research in generative models has 
also identified several methods for producing synthetic video.21 

One technique—a major source of the “deepfakes” most widely circulated 
beyond the research community—is known as generative adversarial networks, or 
GANs.22 Invented in 2014, GANs have become a key area of exploration within 
the technical community. A variant of the basic ML workflow described above, 
GANs use two paired models. One model, the discriminative network, is trained on 
a dataset of interest, such as the corpus of tagged faces previously discussed. The 
second is a generative network, which produces synthetic data based on a given 
dataset.

A GAN places a generative network and a discriminative network into com-
petition with one another.23 The generator attempts to create novel data to “fool” 
the discriminator into classifying synthetic data erroneously as genuine. The game 
is played iteratively, and the successes and failures of the discriminator are used to 
train both networks in subsequent rounds. 

As a result, the generator improves at creating imitations, and the discriminator 
improves its ability to detect fakes produced by the generator. If properly trained, 
the GAN results in a generator capable of creating fakes that closely resemble the 
original training data. Therefore, a GAN with a discriminator trained on images of 
faces would produce a generative network that can create novel, synthetic images 
of faces. 

As with the other deep generative models described, researchers have illus-
trated the capacity of GANs to create realistic, synthetic imagery of objects in a 
range of contexts.24 GANs have also demonstrated an impressive capacity to make 
seamless modifications in existing media. This includes the transformation of photos 
from day to night,25 the artificial aging of faces,26 and the substitution of animals with 
other animals in the same pose.27  

Costs and Capabilities
Examining the technical literature on generative models helps determine the 
resources required to produce a high-quality deepfake, and the range of differ-
ent kinds of faked media that can be generated. These facts hint at what kinds of 
malicious actors might use deepfakes for spreading disinformation, and the media 
they might create with the technology. 

The research literature on synthetic face generation offers a good starting point 
for examining the costs and capabilities of generative models. With models trained 
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on faces, malicious actors might seek to produce believable profile photos for fake 
accounts on social media platforms or to create a false narrative around a made-up 
individual. One widely-cited paper from 2017 illustrates that state-of-the-art GANs 
can produce realistic, synthetic face images up to a 1024 x 1024 pixel resolution.28 
In this case, researchers relied on a training dataset of 30,000 photos of celebrities 
at the same resolution, and needed four days of training on eight Graphics Pro-
cessing Units released in 2017.29 GPUs—a specialized type of hardware—are a 
standard platform for conducting ML applications. Malicious actors willing to settle 
for generating lower-quality synthetic faces could do so with significantly smaller 
training datasets. GANs with smaller datasets—in the 2,000-image range—have 
generated synthetic images at a similar size but with less realism and a narrower 
range of faces.30 

GANs trained solely on photographs of faces will be limited to synthetic face 
imagery, while disinformation perpetrators may desire access to models capable of 
simulating many kinds of objects. Recent work provides a few helpful datapoints for 
evaluating the resources needed to produce these more flexible models. SAGAN 
and BigGAN are two recent examples with state-of-the-art performance, both 
trained on ImageNet—a popular dataset consisting of more than 14 million images 
indexed into more than 20,000 categories.31 SAGAN produces realistic synthetic 
imagery of a variety of objects at a 128 x 128 resolution after two weeks of training 
on a cluster of four GPUs.32 BigGAN, which improves on the SAGAN performance 
at the 128 x 128 scale, produces larger, high-quality 512 x 512 images on 24 to 48 
hours of training.33 The scale and choice of hardware makes a significant difference 
in the time necessary to complete the training process. BigGAN was trained on 128 
to 512 cores of a Google TPUv3 Pod, a hardware system released in 2018 specif-
ically designed for accelerating machine learning applications.34 The result is that 
disinformation campaigns with more money to spend on specialized hardware may 
create these kinds of flexible image generation models more quickly.  

Disinformation actors will want to generate more than static images. A few ex-
amples provide a rough benchmark for the resources needed to apply deep gen-
erative models to other forms of media. WaveNet, the high-performance synthetic 
voice system previously discussed, was trained on 24.6 hours of English speech 
data, with an alternative demonstration trained on 34.8 hours of Chinese speech.35 
SampleRNN, an alternative speech synthesis model producing quality results, relied 
on a dataset of 20.5 hours of speech, training for approximately a week on a single 
GeForce GTX TITAN X, a GPU released in 2016.36 As is the case with image-based 
generative models, campaigns with resources to invest in specialized hardware will 
be able to reduce training times for audio-based models. These training periods 
can be significantly shorter as a result of algorithmic improvements and differing 



Center for Security and Emerging Technology 11

hardware setups. One recent paper on deep generative models for synthetic voice 
reported training times of 37.5 hours, leveraging a cluster of eight TITAN X GPUs 
with around 20 hours of speech data for training.37  

Disinformation campaigns may also want to use generative models to create 
faked videos. The data, hardware, and training time needed to create high-per-
formance models for video is generally greater than for images and audio. The 
technology is also less mature, leading to lower-quality fakes. One landmark 2018 
demonstration of a model called “vid2vid” showed that GANs can successfully 
conduct what is known in the ML field as “video-to-video synthesis.”38 This process 
enables researchers to “translate” the visuals from one video into another: vid2vid 
can substitute objects, change video styling, and simulate entire scenes. The pro-
duction of high-resolution 2K synthetic video of up to 30 seconds was achieved 
with an eight GPU cluster running over an approximately 10 day training process.39 
Researchers ran a number of experiments, with training datasets ranging from a 
collection of about 3,000 short street-scene videos to a 900-video collection of 
reporters providing briefings.40 While providing a flexible framework for produc-
ing many kinds of synthetic video, the researchers note that the model continues to 
suffer from issues including the inability to “guarantee that an object has a consistent 
appearance across the whole video.”41 

Malicious actors may not need the ability to generate many different kinds of 
faked scenes offered by a model like vid2vid. A disinformation campaign may only 
want to leverage ML to fake a particular kind of video, such as a hoaxed recording 
of a political leader speaking at a podium. This would allow them to take advan-
tage of narrower models developed by the ML field. 

One prototypical example is “do as I do” video synthesis, which draws from 
a source video of a moving person and produces a synthetic video of a “target” 
individual in a separate scene doing the same motions. GANs have proven effective 
at producing these synthetic videos.42 For a disinformation campaign, these narrow-
er models are attractive because they require significantly less data and training 
time to create. One method developed by researchers in 2018 can accomplish “do 
as I do” synthesis effectively with far less data, using only 100 “source” videos of 
professional dancers for training, and five videos of “targets” making a range of 
motions for eight to 17 minutes.43 More recent work on a system known as MetaPix 
shows that alternative approaches can achieve “do as I do” synthetic video pro-
duction with only a few frames of data available from the “target.”44 This training 
for MetaPix was done on a cluster of four TITAN X GPUs, requiring a single day of 
training. However, quality problems persist. As with vid2vid, these generative mod-
els can noticeably distort the resulting video and struggle to synthesize believable 
motion of objects, such as loose clothing or hair.45 
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This review of the research literature understates the operational complexities 
faced by an online influence operation in deploying deepfakes “in the field.” GANs 
are relatively delicate tools, even for trained researchers. Training is often unstable 
and subject to “mode collapse,” in which the generative model arrives at a single or 
small set of outputs able to fool the discriminator, resulting in generators capable of 
producing only a tiny set of synthesized outputs.46 These “collapsed” models will be 
useless to a disinformation campaign that needs to generate more than a handful of 
faked faces or images. The on-staff technical expertise of an influence operation will 
make a major difference in whether or not a malicious actor can create generative 
models effectively. 

A disinformation campaign unwilling to deal with the cost and complexity of 
creating a deepfake from scratch could obtain a pre-trained model created by 
someone else. Increasingly, pre-trained models are being open-sourced or em-
bedded in software for use by laypeople. Typically, these pre-trained deep gen-
erative models perform simple, routine transformations of a piece of media; this 
trend is most prominent in the “face swap,” or the use of ML to replace one face 
in an image or video with another. FakeApp, an app released in 2018, enabled 
non-technical users to perform this transformation, frequently for the purpose of 
transplanting celebrity faces into pornographic films.47 Today, the basic technology 
for creating fake swaps is now freely available in open-source software reposito-
ries online.48 Freely or cheaply available generative models for creating a range of 
different fakes will likely become the norm as the knowledge to create deepfakes 
grows more widespread. While these pre-trained models may be lower quality and 
less customizable than models created from scratch, the low cost to using them may 
attract less well-resourced disinformation campaigns. 

DEEPFAKE DETECTION
Online influence campaigns will not make the decision to use deepfakes in a 
vacuum. Beyond the resources needed to produce a deepfake and the resulting 
quality, malicious actors will weigh the risk of their hoaxed media being identified 
as fake. 

To that end, progress in the field of ML on detecting deepfakes will influence 
how the technology is used to spread false narratives. Disinformation campaigns 
will avoid easily detectable deepfakes in favor of ones harder to identify. This sec-
tion examines the current strengths and weaknesses in deepfake detection, and how 
detection algorithms might be used in practice. 

Deepfake Detection: Strengths and Weaknesses
Digital media forensics—the field of research examining how faked or tampered 
media might be detected—has yielded a wealth of tools for identifying suspicious 
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artifacts out of sync with the known behaviors in cameras capturing images and 
video, as well as artifacts produced by post-capture processing and manipula-
tion.49 This field has begun to turn its attention to identifying synthetic media gener-
ated by GANs and deep generative models as they have grown in prominence in 
recent years. 

One approach attempts to isolate and develop detection systems for artifacts 
and inconsistencies known to be common among different deepfake creation meth-
ods. GANs and other deep generative models produce faces exhibiting unrealistic 
behavior, such as infrequent blinking or a lack of subtle variations in skin color 
produced by heartbeats.50 Other methods for identifying inconsistencies look for 
visual warping of certain elements like the face in synthetic media and the unusual 
coloration occasionally produced by GANs in images.51 

ML has also been applied to the problem of detecting deepfakes.52 Rather than 
looking for a specific inconsistency, ML-driven approaches focus on training models 
to examine many different features of a piece of media to identify a fake. 

Researchers have reported strong success in identifying deepfakes with ML. 
One recent paper on a deep learning system called XceptionNet has claimed 
a 99.3 percent deepfake detection accuracy on raw images, and 81.0 percent 
accuracy on a more challenging task involving low-quality images. This model was 
trained on a dataset of more than 1.8 million manipulated images constructed from 
still frames of 1,000 deepfake videos.53 An alternative system based on simpler ML 
methods has shown comparable performance with a smaller dataset of 225,000 
images drawn from still imagery of faces.54  These simpler methods also have the 
advantage of being trained on commodity CPUs, rather than requiring the more 
specialized GPU hardware needed to accelerate the training of large deep learning 
models.55 

These ML-based detection algorithms suffer from one important drawback: they 
perform poorly when encountering novel means of creating faked media not incor-
porated into the original training set. Even beyond deepfake detection, ML models 
frequently perform well only on the dataset they were trained on, resulting in systems 
that fail when presented with new data. 

Generalizing to new data has been a chronic problem with many of the deep-
fake detectors proposed in recent years. One evaluation of XceptionNet tested it 
against random deepfake videos from YouTube and concluded that its accuracy 
was “much, much lower” than reported. The training data used did not accurate-
ly represent the kinds of video manipulation being seen “in the wild.”56 Another 
2018 paper evaluating multiple approaches noted the “deficiencies of detection 
algorithms when unknown data is presented” and concluded that “[these methods] 
cannot meet the challenge of detecting fake faces.”57  
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Another concern is that many ML-based detection methodologies are vulner-
able to “counter-forensics,” or techniques a hypothetical hacker implements to 
subvert detection systems.58 Deep generative models can be improved to avoid the 
suspicious distortions that indicate a fake image or video.59 Subtle modifications to 
deepfakes can also camouflage them from popular ML-based detection methods.60  
These counter-forensic techniques will complicate the efforts of forensic experts in 
ascertaining media manipulation going forward. 

Deepfake detection is far from perfect. While detection systems succeed in iden-
tifying known deepfake creation methods, they may generalize poorly to methods 
that are not incorporated into the training data. As a result, online influence opera-
tions have an opportunity to create and circulate faked media without detection. 

Will Detection Be Deployed at Scale?
Success by researchers in detecting deepfakes is only one part of the equation. 
Deepfake detection systems are not likely to deter disinformation campaigns from 
spreading false narratives if the systems prototyped in the lab are never put to 
broader use by social media platforms, journalists, and others. 

The integration of academic research into practical tools is uneven. Advances 
in detection are—by and large—not being integrated into standalone products 
or services for the general public. Only a few startup companies offer detection 
services commercially, but focus on servicing businesses concerned about the rise of 
deepfakes. Deeptrace, which claims to be the “first-to-market deepfakes detection 
solution,” has followed this model, providing a proprietary detection technology for 
identifying synthetic media.61 

Ubiquitous deepfake detection may not in itself deter malicious actors. Evidence 
suggests that the mere identification of faked content does not necessarily change 
public views about its veracity.62 In this respect, recent commitments by major online 
platforms to remove deepfakes entirely may have more significant implications for 
online influence campaigns. 

Public and policymaker concern has led to many of these platforms declaring 
policies against uploading deepfake content under certain circumstances. In Jan-
uary 2020, Facebook announced that it would begin removing content that “has 
been edited or synthesized…in ways that aren’t apparent to an average person 
and would likely mislead someone into thinking that a subject of the video said 
words that they did not actually say” and were generated using AI or ML.63  Twitter 
adopted a broader approach in February 2020, announcing it would remove and 
warn users against “synthetic or manipulated media that are likely to cause harm.”64 

Platforms such as Reddit have adopted similar policies.65
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Given the size of these platforms, effectively enforcing these policies will require 
internal systems to automatically detect when deepfakes have been uploaded. Ma-
jor technology companies have thus accelerated research in detection. Since 2018, 
Google has made datasets of synthetic speech and video available to researchers 
in an effort to encourage the creation of common standards in the community and 
enable work on detection.66  In 2019, Amazon Web Services, Facebook, Microsoft, 
and the Partnership on AI—a civil society organization—launched a “Deepfake 
Detection Challenge,” a competition to encourage research and new approaches 
in identifying manipulated media.67  These efforts will likely play a significant role 
both in pushing research forward and smoothing the progression of technical 
advance-ments into practical software solutions that can be implemented by 
intermediaries across the web. 

The aggressive stance taken by online platforms against deepfakes will have 
implications for online influence operations. Malicious actors will face a more hos-
tile environment for distributing deepfakes through major social media channels, as 
the content will be removed if identified by a detection algorithm. To the extent that 
disinformation campaigns create and spread deepfakes, they will do so when they 
can evade detection algorithms on these online platforms. 



Center for Security and Emerging Technology18



Center for Security and Emerging Technology 17

Future Scenarios and 
Recommendations

3

he research trends in deepfake creation and detection influence 
the resource requirements, media creation capabilities, and ex-
posure risks that disinformation actors will face in spreading false 

narratives with synthetic media. These factors suggest two scenarios: one 
where disinformation campaigns adopt off-the-shelf ML models to “flood 
the zone” with deepfakes, and another where engineers create their 
own customized generative model to produce deepfakes for a targeted 
purpose. Of these two scenarios, “tailored” deepfakes are poised to be 
the greater threat over time. 

This section of the paper assesses these two scenarios, tying together 
the disparate research trends discussed in the previous section to anticipate 
who is likely to use deepfakes in manipulating the media, how they will use 
them, and the overall threat posed by the technology. Based on this analy-
sis, this section offers a set of recommendations to mitigate the threat.  

COMMODIFIED DEEPFAKES: HEADED TO A STALEMATE
In one scenario, deepfakes could proliferate and become ubiquitous 
in the public discourse. Even poorly resourced disinformation perpetra-
tors could take advantage of the technology as it becomes increasingly 
cheap and accessible. While deepfakes will become easier to produce, 
they will not pose a significant and growing threat. Quite the opposite: 
technical trends seem to suggest that detection systems will hold deep-
fakes at bay, confining them to limited areas of the web. 

Deepfakes are indeed commodifying. The availability of open-source 
packages and off-the-shelf software succeeding face-swapping apps like 
FakeApp are likely just the beginning of a wave of tools for simple manip-

T
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ulations of media. While ML models can be challenging to design from the ground 
up and train to a high level of performance, once built they are relatively easy to 
use and distribute. ML-driven media manipulation capabilities will become more—
rather than less—accessible with time. 

The spread of deepfake creation technology is not confined to underground or 
nefarious means: companies like Adobe have begun incorporating ML-enhanced 
tools for editing images and audio into their software.68 A strong commercial moti-
vation exists for platforms to offer these cutting-edge features to their customers.

The commercialization of deepfake creation tools and the open-sourcing of ML 
models will likely lower the cost and complexity of these tools to the point where 
even technically unsophisticated disinformation campaigns will adopt deepfakes. 
Where a simple face swap in an image or video might help the campaign harass 
their targets or spread uncertainty with little operational cost, it should be expected 
that they will do so. 

But this increasing ubiquity overstates the actual impact. Current research shows 
that routine image and video modifications appear to be the easiest to detect. 
Moreover, widely accessible deepfake creation tools will likely be available to 
researchers and malicious actors alike, allowing researchers to examine the tech-
nology and develop detection schemes. 

Even if researchers cannot access the underlying deepfake creation tool, the 
widespread use of a model for generating faked media produces ample training 
data for detection systems. Good examples include software like Face2Face and 
DeepFake—among the most widely used and most reported-on techniques for 
creating deepfakes. Researchers have focused their efforts on the synthetic media 
generated using these tools, making these techniques highly vulnerable to detection. 
As a method of producing deepfakes becomes more popular, detection teams will 
have access to the resources necessary to identify them. 

Deepfakes created through “commodified” methods can therefore in theory be 
quickly identified. But effective detection will require continuous maintenance. The 
existing body of deepfake detection research suggests no conclusive solution for 
identifying ML-generated fakes will be found in the near future. Instead, detection 
systems will need constant updating on a case-by-case basis as new apps and pre-
trained models emerge. Private companies are likely to take the lead on funding this 
upkeep. Nearly all major social media platforms have policies that ban malicious 
uses of deepfakes and face strong political pressures to combat disinformation. 

Effective deepfake detection empowers companies to enforce policies on 
removing deepfakes from their platforms. The implementation of detection systems 
at the scale of platforms like Facebook and Twitter will make it difficult for commod-
ified manipulations to spread broadly on these platforms before being taken down. 
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The malicious use of simple, commodity deepfakes will likely expand in the near 
term, but decline as major social media platforms implement the findings presently in 
the academic literature. 

This is not to imply commodified deepfakes will have no impact on public 
discourse. Rather, these deepfakes will likely continue to circulate within specific, 
confined places online. Widespread, aggressive deepfake detection and takedown 
by the biggest online platforms will not cover private messaging networks, such as 
WhatsApp or Telegram, or smaller platforms such as Gab that have refused to filter 
content.69 Some platforms may also opt to use detection systems to identify deep-
fakes for users rather than deleting the content, a permissive approach allowing 
these fakes to continue shaping perceptions.70  

Disinformation campaigns will be able to influence specific audiences with 
commodified deepfakes on certain platforms rather than targeting public discourse 
at large. In these cases, the effectiveness of a deepfake will depend on the ability 
for individual users and small communities to weed out synthetic media as it ap-
pears. Whether deepfakes are able to influence discourse in this context will vary 
considerably from platform to platform and even among communities within a given 
platform. 

TAILORED DEEPFAKES: A PERSISTENT THREAT
A disinformation campaign might choose to invest in constructing a custom ML 
model to produce deepfakes for a highly specific objective rather than relying on 
pre-existing tools and models. This could include the creation of a high-quality 
simulation of a target individual’s voice, or the production of media integrating 
counter-forensics to defeat cutting-edge detection methods. 

Unlike the commodified deepfakes discussed above, tailored deepfakes will 
pose a persistent if not growing threat over time. Disinformation campaigns can 
customize deepfakes to bolster specific false narratives a target audience may be 
susceptible to believing. These deepfakes will also be generated by custom ML 
models, enabling them to more effectively evade detection algorithms.  

However, deep generative models will not serve malicious actors in all situa-
tions. Four important limitations constrain disinformation campaigns in effectively 
using the technology, offering predictions around who will use tailored deepfakes, 
when and how they will use them, and what they will attempt to fake using ML.

Who Can Build Tailored Deepfakes?
A review of the technical literature indicates that producing tailored deep generative 
models for malicious purposes is well within the reach of many, but not all, actors. 

The specialized expertise needed to develop, train, and deploy custom ML 
systems is rapidly expanding, along with the body of freely available training mate-
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rials.71 Research literature on ML-generated synthetic media is openly available and 
described in sufficient detail to allow a person versed in the field to adapt them. This 
will make it easier over time for a malicious actor to obtain the knowledge or talent 
necessary for producing a deep generative model.

The specialized hardware needed to train a custom generative model is not 
prohibitively expensive. Many of the papers demonstrating state-of-the-art syn-
thetic media creation require only a relatively small number of GPUs. The existing 
research suggests that a malicious actor could build a tailored GAN for producing 
synthetic faces with single digit numbers of high-end GPUs. At the time of writing, 
this hardware is available for purchase by the general public and generally costs 
in the range of $3,000 per GPU— an expense in the range of tens of thousands of 
dollars for a disinformation perpetrator.72  

Disinformation actors may not even need to acquire and install their own 
specialized hardware. Cloud computing providers now rent access to GPUs for a 
fraction of the cost of outright purchase. Google currently offers access to the NVID-
IA Tesla V100—an industry standard processor for ML applications—at $2.48 per 
hour per GPU.74 Disinformation actors will increase their risks of exposure in using 
this infrastructure: most cloud providers collect identifying user information, and a 
record will exist of their activities that could be accessed by law enforcement or oth-
er government agencies. However, the opportunity to reduce the costs of creating 
deepfakes by an order of magnitude or more may outweigh these concerns. 

These trends in talent and hardware suggest that tailored deepfakes are likely 
out of reach for an amateur troll, but quite affordable for a state, criminal organi-
zation, or political operation. Generating tailored deepfakes is somewhat more 
expensive than using existing media editing software to create faked media, but 
only marginally so for a well-resourced actor. The increased realism made possible 
through ML may well make it the preferred option. 

When—The Disinformation Zero-Day
Sophisticated disinformation campaigns want deepfakes that will evade automat-
ed detection and takedown systems for as long as possible to maximize the audi-
ence viewing their content. Since existing detection methodologies for deepfakes 
appear strongest when dealing with a known method, influence operations will 
want to hold a custom deep generative model in reserve until a key moment: the 
week before an election, during a symbolically important event, or in a moment 
of great uncertainty.

Detection systems are vulnerable to what are known in the field of computer 
security as “zero-days.” Zero-days are vulnerabilities unknown to defenders at 
the time an attacker deploys them. Often, little can be done to secure systems and 
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limit the damage when zero-days are first deployed, making them a major threat. 
A malicious actor able to develop a novel means of producing synthetic media 
“in house” could produce a kind of disinformation zero-day. These deepfakes will 
effectively evade exposure and takedown when released. 

But, as is true in the computer security domain, the advantage an attacker reaps 
from using a zero-day is temporary. Once revealed, a vulnerability can be studied, 
and patches can be built that eliminate the effectiveness of the exploit. The same is 
true in synthetic media. Creating a vast corpus of fakes with a new deep genera-
tive model inadvertently produces training data for improving detection algorithms. 
These tailored models are therefore depleting assets: the more they are used, the less 
effective they are likely to become. 

To this end, a disinformation campaign will not likely use a custom generative 
model as the “go to” form of content generation. Reserving tailored deepfakes for a 
key moment maximizes the impact of the fake, while limiting the possibility that de-
tection systems will be trained to identify and weed out the content before it shapes 
public discourse. 

How—The Problems of Training Time
Training a generative model to produce a high-quality deepfake takes time. ML 
is a computationally intensive procedure, often requiring a massive number of 
calculations in order to extract a good representation from the training data. This 
imposes significant operational constraints on disinformation campaigns, limiting 
how they can use tailored deepfakes to manipulate public discourse.  

It is challenging to reliably make content “go viral.”  As a result, disinformation 
campaigns continuously improvise on existing narratives, seeking to ride emergent 
topics to prominence and appropriate them to their own advantage. This appears to 
be true even of the most well-resourced and large-scale campaigns of online pro-
paganda. The 2016 Russian election interference campaign, for instance, produced 
a continuous stream of media that nimbly responded to trending memes and stories 
in the news cycle.75 Many of these memes are momentary flashes in the pan—dis-
cussed only for a day or even a few hours before being replaced by another focus 
of discussion.

The rapidly fluctuating nature of online discourse suggests that deepfakes will 
not be an all-purpose content generation tool for disinformation campaigns. Train-
ing a relevant generative model will simply take too long. 

The exact length of training time will depend on a number of factors, including 
the specific task the ML model is trained for, the computational power available, 
and even small details like the dimensions of the prospective image. But the training 
time to create a system to produce high-quality synthetic media can stretch from a 
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few days to a few weeks—and even this estimate may be optimistic. GANs are no-
toriously prone to failure in the training process, particularly if a disinformation cam-
paign cannot recruit an experienced specialist in the field to assist in their operation.

These techniques can and will improve, but for now, the training time delay limits 
the usefulness of customized generative models for the flexible, rapid-fire content 
generation typical of many recent online influence efforts. It will be challenging to 
use deepfake technologies for unpredictable news events and viral “memes,” as 
salient moments may lose relevance by the time a disinformation campaign aggre-
gates data and trains a model for generating content. In these situations, a disinfor-
mation effort may find it faster and less expensive to use human agents to produce 
misleading content online.

The “sweet spot” for disinformation campaigns using customized deepfakes 
may lie elsewhere. First, malicious actors will likely use ML models to generate 
content for situations with sufficient lead time to prepare, train, and test their systems. 
Events that can be anticipated in advance or stories with ongoing narratives provide 
a stable set of circumstances for training a deep generative model. This can be more 
than a fixed date like an election: frequently recurring events such as mass shootings 
or protests provide evergreen “scenes” that a disinformation campaign might train a 
deep generative model to realistically simulate. 

Second, disinformation campaigns will have incentives to invest in ML models 
that can be flexibly applied regardless of the specific situation at hand. For exam-
ple, models that realistically simulate the voice of a high-value target could spread 
false narratives in a variety of contexts; the voice might be exploited to make a 
target appear as if they are opining on a range of different topics. 

Third, ML models are likely to generate assets for a disinformation campaign 
when time pressure is not as acute. These are applications somewhat separate from 
the day-to-day content produced and distributed by the campaign. For instance, 
deep generative models may be used to improve the believability of a fake identity 
online by adding a high-quality profile photo. These elements do not need to be 
frequently updated, and a disinformation campaign may be able to populate this 
content with a generative model at greater leisure. 

What—Data Accessibility Drives Content
Using tailored deepfakes in disinformation operations will require access to plen-
tiful training data depicting the person, place or thing the campaign seeks to fake. 
Data is a critical input for creating ML models. The inability to compile a database of 
faces, for instance, prevents an actor from training a model to generate faces. Similar-
ly, without voice samples, an ML system cannot simulate that voice realistically. 

At the very least, sparse or difficult-to-access data for training will require a 
prospective disinformation actor to expend resources to acquire it. This may tip the 
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balance away from leveraging ML in certain cases where the costs of gathering 
data outweigh the benefits from generating more believable hoaxes. Conversely, 
available methods for acquiring datasets cheaply or freely will make ML use more 
likely. 

The availability of data is therefore a useful lens to examine what malicious 
actors are more or less likely to depict in their deepfakes. While it is impossible to 
list the intersection of all places where a disinformation actor may seek to create 
synthetic media and where the data is plentiful, the research literature demonstrates 
a few relevant categories from a security perspective. 

Public figures with a significant corpus of media available online are more 
susceptible to targeting in part because sufficient training data exists to imitate them. 
It is no surprise that researchers have tended to simulate major political figures and 
entertainment celebrities in papers on deep generative models: public recordings of 
them are plentiful and easy to access. In the video context, some public figures are 
more amenable to simulation than others because recordings depict them behaving 
in recurring patterns with small variation. There are many recordings of a politician 
speaking at a lectern, for instance, or a celebrity on the red carpet. This is an attrac-
tive target for disinformation efforts: the cost to acquire the data to train a generative 
model is low, and the individuals are high-profile. Similar logic applies to gener-
ating synthetic media depicting prominent landmarks or locations, where massive 
collections of photos or recordings may exist for training online. 

On the other end of the spectrum, abundant data exists for commonplace 
objects and motions captured repeatedly in images and video. Images of faces, for 
instance, are easy to acquire, simplifying the creation of synthetic faces using ML. 
Videos that record common activities like dancing or singing are widely available, 
facilitating the simulation of new videos depicting those activities. These are also 
likely to be an attractive target for malicious actors: it may be useful to simulate 
events with anonymous crowds in locations that are hard to verify. Disinformation ef-
forts have frequently relabeled and misleadingly contextualized images and video 
from unrelated situations to drive false narratives.76 They might do the same with a 
scene generated from scratch. 

Where is data scarce? What are the circumstances under which a malicious ac-
tor might have difficulty training a tailored deep generative model? For now, data is 
scarce when a malicious actor seeks to depict a specific individual, object, or scene 
that has not been widely recorded. Creating customized synthetic media around an 
individual who becomes an unexpected internet celebrity due to a small number of 
“viral” videos may be difficult through ML. Similarly, a specific building or location 
previously largely ignored but under significant scrutiny as the site of a major news 
story may be difficult to simulate. In these cases, disinformation campaigns may be 
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delayed while they wait for sufficient training data to accrue online before they can 
train a generative model or be forced to spread their narrative through alternative 
means. 

RECOMMENDATIONS
Deepfake creation will become easier with time. The material costs are not pro-
hibitively high, and much of the know-how is published openly and available to 
use. Costs will continue to decline as research advances are distilled into easy-to-
use software and open source code. However, detection systems and takedown 
policies will help to keep commodified deepfake technologies somewhat at bay. 
The greater threat will be from tailored, targeted fakes: the trends indicate that 
these hoaxes will remain a persistent risk. 

This analysis offers concrete recommendations for confronting these threats and 
limiting the impact of deepfakes in manipulating public discourse. These recommen-
dations seek to hamper both the influence of commodified deepfakes and the use 
of the technology by sophisticated malicious actors creating generative models for 
their disinformation efforts. 

Recommendation 1: Build a Deepfake “Zoo”
Absent some major technical breakthrough, deepfake detection will evolve as a 
cat-and-mouse game. Novel means of creating synthetic media will be invented, 
and detection systems trained to account for the new method. 

Success will therefore depend on how quickly detection systems used by giant 
social media platforms and smaller entities can account for new methods. Rapid in-
tegration means disinformation campaigns will confront a hostile environment where 
synthetic media is quickly identified and removed before proliferating. If the time 
between the first use of a new technique and its widespread integration into detec-
tion systems is sufficiently narrowed, it may render the use of ML for these purposes 
an unattractive option for malicious actors. 

Making this integration work will require rapid access to samples of media pro-
duced by different deepfake models. This is particularly important when the threat 
emerges from a sophisticated attacker able to construct novel generative systems to 
augment a disinformation campaign. In these cases, media examples produced by 
a novel technique may be initially sparse. It will be important to identify and aggre-
gate examples for training data as quickly as possible.

In order to accelerate this process, stakeholders—platforms, researchers, com-
panies—should invest in the creation of a deepfake “zoo” that continuously ag-
gregates and makes freely available datasets of synthetic media as they appear 
online. These datasets would be categorized by media type, and if possible, include 
annotations about the likely method used to create the content. This would mirror 
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initiatives taken by organizations like the National Cyber-Forensics and Training 
Alliance in the cybersecurity domain. The NCFTA operates as a common clearing-
house for data about new and emerging malware threats, enabling their partners in 
private industry and government to respond more effectively.77 

Similarly, by lowering the costs of acquiring relevant, up-to-date training data to 
augment detection algorithms, the “zoo” would make overall detection more robust. 
This would improve on the infrequently updated set of common datasets in use in the 
research community.

Recommendation 2: Encourage Better Capabilities Tracking
Inconsistent practices for documenting research have already led members of 
the technical community to raise concerns about a looming reproducibility crisis 
in ML.78  Beyond posing problems for the verification and validation of research 
results, inconsistent documentation makes precise evaluations of the availability 
of ML technologies for various applications difficult. This is clear in the review of 
the technical literature around deep generative models. Papers are inconsistent 
in their disclosures of key facts such as the hardware used in the training process, 
characteristics of the training data, and length of the training process.79 As a result, 
this paper must rely on a smaller set of research that has documented these as-
pects of the experimental process. 

Inconsistent documentation poses a significant issue in assessing the current 
state and future prospects of media manipulation and deep generative models. It is 
difficult to ascertain the speed at which research advances make it possible for cer-
tain actors to produce cutting-edge synthetic media at a low cost, hindering threat 
assessment and the effective allocation of resources. 

Research communities, funding organizations, and academic publishers should 
work toward developing common standards for reporting progress in generative 
models. This might include raising the bar on documenting the processes used in 
training a new model, as well as integrating this information in a machine-readable 
way into the metadata included with published academic papers. Such standard-
ization would improve transparency around the state of the field in ways that facili-
tate better strategic planning. 

Recommendation 3: Commodify Detection
Simple deepfakes can still pose a threat in a world where detection systems are 
widely implemented. While these fakes will be quickly detected and removed 
on the most popular, mainstream platforms for distributing content, they will still 
spread in the less monitored spaces of the web. This includes distribution through 
private messaging platforms, which already serve as channels for false narra-
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tives even in the absence of ML-generated fakes.80 This content will also continue 
to spread among smaller platforms with a more hands-off approach to synthetic 
content. 

In these cases, the spread of a deepfake depends on the receptiveness of the 
viewer, rather than the effectiveness of a detection algorithm. The research literature 
around the sociological and psychological forces that drive individuals to believe 
or spread disinformation is expansive and contains many open questions.81 In some 
cases, a fact check tool or deepfake identification algorithm will do little to dissuade 
someone from accepting a false narrative. Corrections may even backfire and 
increase misperceptions in certain individuals.82 

Regardless, citizens should have access to the tools and training that enable 
them to investigate a suspicious piece of media if they so choose. A trained eye can 
identify crude deepfakes without any special procedures and processes. It may be 
important in this context to raise public awareness about deepfakes and to highlight 
indicative examples. Regular training sessions for journalists and people in profes-
sions likely to be targeted may also help limit the extent to which members of the 
public are duped.83 

In parallel, philanthropic organizations and government agencies should give 
grants that facilitate the translation of research findings in deepfake detection into 
user-friendly apps for analyzing media that members of the public might encounter 
while browsing the web. This investment would strengthen the passive resistance that 
the public has against synthetic media generated by disinformation campaigns. It 
would also improve situational awareness for those seeking to mitigate the threat: 
these apps might aid in early identification of new techniques for producing deep-
fakes long before the research community or the mainstream media would other-
wise be aware of it. 

Recommendation 4: Proliferate “Radioactive” Data
Detection and attribution are major concerns for the disinformation actor. When 
quickly identified and taken down, deepfakes cannot influence public discourse. 
Even worse for the perpetrator, investigators may be able to uncover previously 
concealed elements of a disinformation campaign when synthetic media contains 
distinctive traces. These indicators could include the false identities used to distrib-
ute content and inferences about the target and objectives of the campaign. 

At the same time, disinformation actors will leverage ML only to the extent that 
it is cost-effective. They will frequently rely on free, publicly available images and 
video for training to avoid assuming the heavy costs of acquiring and structuring 
data. This open-source reliance creates a vulnerability that could raise the risks for 
disinformation actors seeking to leverage ML for malicious purposes. 
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ML researchers have recently demonstrated a method that enables datasets 
to be made “radioactive,” containing traces non-obvious to the human eye, but 
later extractable from media produced by models trained on that data.84 Usage of 
“radioactive” data can be detected even when it constitutes as little as one percent 
of the data used to train the model.85 These subtle modifications do not significantly 
affect the performance of models trained on marked datasets. 

Deepfakes trained on “radioactive” data can be easily identified, offering a 
way to check whether an image or video is synthetically generated by an ML model 
without elaborate media forensics techniques. The unwary disinformation actor 
might draw on publicly available data, train a generative model, and produce syn-
thetic media all without knowing that their training corpus has been marked. Even 
if the tainted dataset is combined with others prior to training, these markers would 
persist in the resulting media. 

Stakeholders interested in mitigating the harm from deepfakes should encourage 
the “radioactive” marking of public datasets likely to be used as raw material for 
training deep generative models. For instance, prior to public release, academic 
and corporate ML labs might mark datasets of faces, voices, and other data of high 
value to disinformation efforts. These alterations would not materially harm research 
and legitimate applications, but would allow for quick detection of synthetic media 
circulating online that is purported to be legitimate. This would significantly lower the 
costs of detection for commodified deepfakes produced by pre-trained models and 
used by less technically sophisticated actors. 

Widespread implementation of a variety of marking techniques would raise the 
risks and costs for sophisticated disinformation actors, as well. These campaigns 
would either be forced to source their own datasets to ensure the media they pro-
duce was unmarked, or implement processes for “cleaning” radioactive datasets. 
Marking datasets in this manner would raise the level of uncertainty for disinforma-
tion campaigns. Faced with the possibility that their datasets might contain hidden 
radioactivity, disinformation actors might opt out of the technology altogether. 
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 dramatic demonstration in the lab often reveals little about how 
a technology will be used in the real world. Deepfakes are no 
exception. While the use of ML to produce sharp, high-fidelity 

synthetic media is an impressive technical feat, the incentives of malicious 
actors will shape the ultimate threat the technology poses. Policymakers 
and national security researchers should avoid giving in to hype, but 
rather take precautions when sensible. 

Deepfakes are not magic: ML is not yet so advanced that it can ef-
fortlessly conjure up fake scenes indistinguishable from reality. There is a 
real cost in using ML. Training data, computational power, and technical 
expertise must all be assembled to use it effectively. Limitations in the meth-
odology constrain what fakes can be made, and how quickly they can be 
generated. Moreover, constantly evolving detection methods can make 
synthetic media easier to identify “in the wild.”

These real, somewhat humdrum considerations provide crucial hints 
toward how a disinformation campaign is likely to use this technology to 
manipulate public discourse. While commodification will make deepfakes 
ever easier to produce, off-the-shelf technology for producing synthetic 
media will also become easier to detect and filter automatically. This limits 
the impact of this technology on mainstream platforms and narrows their 
scope to less monitored areas of the web. 

The greater threat is likely from a sophisticated disinformation effort 
that tailors ML models for particular purposes. Moderately well-resourced 
disinformation efforts can afford custom generative models that produce 
cutting-edge deepfakes, but even in these cases, malicious actors are 

Conclusion  

A
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constrained. The strategic dynamics of detection, the demands of training time, and 
accessibility of data all conspire to make some operational uses of deepfakes likeli-
er than not. 

This review also suggests a set of high-impact interventions helping to limit the 
effect of deepfakes in the media manipulation space. These recommendations 
include developing a “zoo” of samples produced by various deep generative 
models, better documentation of generative models within the research literature, 
funding to support the commodification of detection tools, and the use of “radioac-
tive” data to strike at malicious actors who would use public training sets for harmful 
purposes. 

While deepfakes have received outsized attention from policymakers and the 
popular press, less visually striking tactics may exert a greater influence on online 
disinformation campaigns over time. Conversational AI systems might be used to 
make large swarms of fake identities more believable and persuasive. Predictive al-
gorithms could enable malicious actors to better and more subtly target individuals 
and communities receptive to their messaging. A similar approach grounded in the 
technical literature should be taken to examine these capabilities, as well. 

Finally, strategic thinking about the intersection of ML and disinformation should 
not lose sight of the people behind the screen. Disinformation spreads in part 
because fake content appears genuine on its face and resists forensic attempts to 
identify tampering or manipulation. Equally important is the beholder, who must 
believe the false narrative depicted in a fake and share it widely. This analysis can 
spotlight places where disinformation campaigns might leverage modern technol-
ogy to strike, but their ultimate success will depend on the receptiveness of their 
audiences. Even as ML continues to rapidly advance, these social and psychologi-
cal dimensions of influence and disinformation will remain critical to the construction 
of an effective defense in this domain.
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•	 Artificial intelligence: The field of computer science research focused on enabling machines to 
have “intelligence,” broadly defined.

•	 Deepfake: Colloquial term broadly referring to synthetic media produced using tools from the field 
of machine learning.

•	 Deep learning: A family of techniques in machine learning that relies on the use of “neural net-
works,” specific method for constructing models. 

•	 Generative adversarial network (GAN): One particular application of machine learning that 
results in models that can produce strikingly high-quality synthetic media. The core technology 
behind many of the prominent deepfakes that have circulated through the web in recent years.

•	 Machine learning: The subfield of artificial intelligence focused on the design of models that im-
prove through processing of data, referred to in the field as “training.”

•	 Model: A piece of software used in the machine learning training process that improves as it pro-
cesses data. The trained model is then used to accomplish a desired task.

•	 Synthetic media: Media which is not authentically recorded from the real world, but instead faked 
using a variety of different techniques.

Glossary
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