
EVIL PLC ATTACK:
WEAPONIZING PLCS

Team82, Claroty Research Team
Mashav Sapir, Uri Katz, Noam Moshe, Sharon Brizinov, Amir Preminger

RESEARCH PAPER

03 Executive Summary

04 Affected Vendors

 OVARRO, B&R by ABB, Schneider Electric, General Electric,

 Rockwell Automation, Emerson, XINJE

05 Technical Analysis

 05 The Relationship Between PLCs and EWS

 09 OT Upload and Download Procedures

 10 Evil PLC Attack

 11 Attack Scenarios

 14 Research and Methodology

 19 Findings (7 Platforms)

35 Showcases

 35 Example No. 1: GE Mark VIe

 44 Example No. 2: Schneider Electric M580

 50 Example No. 3: Rockwell Automation Micro800

59 Summary

TABLE OF CONTENTS

3Evil PLC Attack: Weaponizing PLCs © 2022 Claroty Ltd. All rights reserved
3

Programmable logic controllers (PLCs) are indispensable industrial devices that control manufacturing
processes in every critical infrastructure sector. Because of their position within automation, threat actors
covet access to PLCs; several industrial control system malware strains, from Stuxnet to Incontroller/
Pipedream, have targeted PLCs.

But what if the PLC wasn’t the prey, and instead was the predator?

This paper describes a novel attack that weaponizes popular programmable logic controllers in order
to exploit engineering workstations and further invade OT and enterprise networks. We’re calling this the
Evil PLC Attack.

The attack targets engineers working every day on industrial networks, configuring and troubleshooting
PLCs to ensure the safety and reliability of processes across critical industries such as utilities, electricity,
water and wastewater, heavy industry, manufacturing, and automotive, among others.

The Evil PLC Attack research resulted in working proof-of-concept exploits against seven market-leading
automation companies, including Rockwell Automation, Schneider Electric, GE, B&R, Xinje, OVARRO, and
Emerson.

This paper will describe in depth, not only how engineers diagnose PLC issues, write, and transfer bytecode
to PLCs for execution, but also how Team82 conceptualized, developed, and implemented numerous novel
techniques to successfully use a PLC to achieve code execution on the engineer’s machine.

Below is a list of affected vendors and products, as well as links to their respective advisories and
remediations (or mitigations).

EXECUTIVE SUMMARY
TEAM82 RESEARCH

4Evil PLC Attack: Weaponizing PLCs © 2022 Claroty Ltd. All rights reserved

AFFECTED VENDORS

Vendor

OVARRO

B&R (ABB)

Schneider Electric

General Electric (GE)

Rockwell Automation

Emerson

XINJE

Platform

TBOX

X20 System

Modicon
(M340, M580)

MarkVIe

Micro Control
Systems

PACSystems

XDPPro

EWS

TwinSoft

Automation Studio

EcoStruxure Control
Expert (Unity Pro)

ToolBoxST

Connected
Components
Workbench (CCW)

PAC Machine Edition

XD PLC Program Tool

Protocol

Custom Modbus
(Port 502/TCP)

ANSL
(Port 11169/TCP)
INA2000
(Port 11159/UDP)

Modbus/UMAS
(Port 502/TCP)

SDI
(Port 5311/TCP)

CIP
(Port 44818/TCP)

SRTP
(Port 18245/TCP)

Modbus UDP
(Port 502/UDP)

CVE

Advisory
CVE-2021-22650

Advisory
CVE-2021-22289

Advisory
CVE-2022-26507

Advisory d
CVE-2021-44477
CVE-2018-16202

Advisory
CVE-2021-27475
CVE-2021-27471
CVE-2021-27473

Advisory
CVE-2021-34605
CVE-2021-34606

https://www.ovarro.com/content-media/assigned/102049/TBOX-SA-2021-0009_1.1.pdf
https://www.br-automation.com/downloads_br_productcatalogue/assets/1640529306294-en-original-1.0.pdf
https://www.se.com/ww/en/download/document/SEVD-2021-222-02/
https://www.cisa.gov/uscert/ics/advisories/icsa-22-025-01
https://www.cisa.gov/uscert/ics/advisories/icsa-21-133-01
https://www.cve.org/CVERecord?id=CVE-2021-34605

5Evil PLC Attack: Weaponizing PLCs © 2022 Claroty Ltd. All rights reserved

A PLC is a robust computer used to control a machine, small automation process, or an entire production
line. It receives data from sensors or input devices, processes this data, and triggers outputs based on the
currently loaded code logic and parameters. In addition to orchestrating an automation process, the PLC
is also used for monitoring and recording run-time data. A PLC can also automatically start and stop
processes, generate alarms if a machine malfunctions, and more.

PLC CPU architecture ranges from NXP ColdFire, to ARM, MIPS, PowerPC, or x86. The operating system,
or firmware, is usually based on a commercial real time operating system (RTOS) with vendor-specific
modifications; some examples are QNX, uCOS, VxWorks, and others. Newer PLC generations even run the
full-scale Linux kernel with some slight modifications.

A PLC’s architecture is designed only to control, support, maintain, and monitor an automation process.
From the hardware level to the firmware user-mode application, all parts should work together to achieve
the goal of executing the code logic the engineer developed and deployed to the PLC.

The Relationship Between PLCs and Engineering Workstations

Automation Applications (e.g. Elevator Program)

OS Level (Tasks, Threads, Memory, Messages, Events, I/O, Timers...)

Vendor Drivers

Hardware & Peripherals

TCP/IP Logging/
DebugRTOS KERNELWeb

Server
C/C++
Libs

File
System

Common
OT

Protocol
Stacks

Proprietary
Protocol

Stack

Bytecode
VM, Runtime,

Compiler

Programming Auxiliary Files
(metadata, text-code,

configs)

Automation
Services

Security
Services

TECHNICAL ANALYSIS
TEAM82 RESEARCH

A generic PLC architecture.

6Evil PLC Attack: Weaponizing PLCs © 2022 Claroty Ltd. All rights reserved

As its name suggests, modern controllers are fully programmable and allow engineers to change their logic
and behavior by simply rewriting it. To do so, an engineer would use specialized software often called
engineering workstation to write and deploy the code to the PLC. For example, Connected Components
Workbench is the engineering workstation sold by Rockwell Automation to configure the Micro Control
System product line (e.g. Micro820 PLC), and General Electric (GE) ToolBoxST is the software used to
control the MarkVI DCS controller series.

Engineering workstation software gives engineers and technicians the tools they need to diagnose, control
and maintain the PLCs. Using the engineering workstations it is possible to perform health checks on the
PLC, view the current state of all its components including memory variables and physical aspects of the I/O,
do firmware upgrades, and modify the PLC code logic.

At its core, an engineering workstation is a fully working integrated development environment (IDE) and
compiler for PLC programs. The full process of executing logic on the PLC consists of four main steps.

1. Develop: The engineer will use the IDE capabilities of the engineering workstation to develop a new PLC
 program in one of the prominent automation programming languages such as Ladder Diagram (LD),
 Structure Text (ST), or Function Block Diagram (FBD).

2. Compile: When finished, the engineer will want to download the new logic to the controller. To achieve
 this, the engineering workstation software will compile the program to a PLC-compatible bytecode
 depending on the firmware and architecture of the target PLC.

3. Transfer: Next, the engineering workstation will communicate with the PLC via its proprietary protocol
 and transfer the compiled bytecode. This process is often called a “Download Procedure,” “Download
 Logic,” or “Download Configuration.” The download terminology refers to the viewpoint of the PLC in this
 process (the PLC downloads the code).

4. Execute: Finally, after the bytecode has been delivered successfully to the PLC, the logic will be
 executed natively on the PLC’s CPU. To support this, usually the PLC firmware has a virtual machine de
 coder that transforms the intermediate bytecode to multiple native machine code instructions.

DEVELOP

PLC code, or textual code,
written in either LD, ST, or

FBD languages.

COMPILE

Programs are compiled
into PLC-compatible

bytecode or bindary code.

TRANSFER

Compiled bytecode is
transferred to the PLC.

EXECUTE

Once bytecode is
successfully delivered to

the PLC, the logic is
repeatedly executed.

https://www.rockwellautomation.com/en-il/capabilities/industrial-automation-control/design-and-configuration-software.html
https://www.rockwellautomation.com/en-il/capabilities/industrial-automation-control/design-and-configuration-software.html
https://www.rockwellautomation.com/en-il/capabilities/industrial-automation-control/micro-control.html
https://www.rockwellautomation.com/en-il/capabilities/industrial-automation-control/micro-control.html
https://www.ge.com/gas-power/products/digital-and-controls/mark-vie-ecosystem/mark-vie-control-st-software-suite
https://www.ge.com/gas-power/products/digital-and-controls/mark-vie-ecosystem

7Evil PLC Attack: Weaponizing PLCs © 2022 Claroty Ltd. All rights reserved

The high-level textual code language is usually
compatible with IEC-61131-3, the open international
standard for programmable logic controllers.
The standard determines the objects and resources
needed for a PLC to execute logic, including:

• Language data-types: BOOL — 1 bit, BYTE —
 8 bit, WORD — 16 bit, DWORD — 32 bit,
 LWORD — 64 bit, etc.

• Variables: global/local scope, I/O mapping, etc.

• Program Organization Unit (POU): standard lib/
 custom functions, function blocks, program, etc.

Such programming languages include graphical and
textual programming languages, for example:

• Graphical

• Ladder Diagram (LD)

• Function Block Diagram (FBD)

• Sequential Function Chart (SFC)

• Textual

• Structured Text (ST)

• Instruction List (IL)

Example of a Ladder Diagram-based program we built in Rockwell
Automation’s RSLogix5000 engineering workstation (RSLogix5000 is
not affected by Evil PLC Attack). The program controls a simple
drinking machine automation process.

https://en.wikipedia.org/wiki/IEC_61131-3

8Evil PLC Attack: Weaponizing PLCs © 2022 Claroty Ltd. All rights reserved

As mentioned above, the engineering workstation
will compile the user program to an intermediate
bytecode that will be transferred later to the
PLC. The bytecode will be handled by the PLC
runtime virtual machine (VM) that will decode each
instruction and jump to a specific routine that
handles it. Eventually a native machine code
instruction will be executed by the CPU.

From a high-level perspective we can summarize
the entire PLC-programming code transformation
as follows:

The user program will
be compiled to an
intermediate bytecode that
can be represented as
simple assembly-like
instructions. In this image,
you can see our Control-
Logix Rockwell Automa-
tion disassembler in action
(ControlLogix is not
affected by Evil PLC
Attack).

PLC code logic transformation: From IEC 61131-3 compatible plain-text code to native machine code execution.

Intermediate
Bytecode

STL

ICE 61131-3 Code
(Textual)

Develop Compile Execute

Logic code is written
by the engineers

Compiler Logic
Runtime VM

Compiled Code
(Binary)

Compiled to
intermediate bytecode
by the engineering

workstation

CPU
Instructions

Executed by the CPU

SCL

LD

FBD

Native Machine
Code

9Evil PLC Attack: Weaponizing PLCs © 2022 Claroty Ltd. All rights reserved

Upload and Download Procedures

Along with the code logic bytecode, which is the
most important piece of information from the PLC’s
perspective, the engineering workstation would also
transfer auxiliary pieces of information, including:

• Metadata: project and program names, symbols
 data, dates (compilation, transfer), information
 about the engineering workstation, and more.

• Configurations: hardware/network settings,
 memory maps and tags, I/O configuration,
 variable definitions, parameters, and more.

• Original Text Code: source-code the engineer
 developed (plain-text code or binary serialized
 representation of the logic).

In many cases, PLCs do not process the metadata or
the original text code. This type of data is stored on
the PLC to support the ability of the engineer to
retrieve a working project from the PLC without
needing a local copy beforehand. The transfer and

storage of the data on the PLC is called the
download procedure.

To retrieve a working copy of the current PLC
logic, an engineer will perform an upload operation
that would read stored data from the PLC.
The data includes metadata the engineering work-
station software requires, including numerous data
objects rather than just the compiled program the
PLC requires to operate. This functionality is often
used for maintenance and diagnostics purposes,
but can also be considered a backup in case the
engineer does not have a copy of running logic.

The fact that the PLC stores additional types of data
that are used by the engineering software and not
the PLC itself, led us to explore the ability to modify
the unused data stored on the PLC to manipulate
the engineering software. This topic yielded the
advanced PLC hiding logic techniques and the Evil
PLC attack technique discussed in this paper.

Understanding download and upload procedures from a PLC’s point of view.

Flow Meter

Valve Actuator

Pressure Transmitter

Radar Level Transmitter

Temperature SensorEngineering
Workstation

PLC

Actuators/
Sensors

Download Procedure
Metadata and configurations
Compiled bytecode
Original textcode

Upload Procedure
Metadata and configurations
Compiled bytecode
Original textcode

10Evil PLC Attack: Weaponizing PLCs © 2022 Claroty Ltd. All rights reserved

This architectural design is common practice in
the industry and shared across most if not all ICS
vendors. It allows engineers to switch between
different engineering workstations and quickly
perform upload procedures to retrieve the currently
running program by getting the actual source
code from the PLC. Therefore, each engineer can
connect to the PLC, get the most updated version
of the source code and configuration, and continue
development from there.

This design choice creates an interesting situation
whereby in order to continue code development
for an automation process, some engineers use the
upload procedure instead of using static project files,
since the most recent versions of the code logic and
configurations are stored on the PLC.

Evil PLC Attack

Most attack scenarios that involve a PLC revolve
around accessing and exploiting the controller. PLCs
are attractive targets for threat actors because a
typical industrial network may have dozens of PLCs
performing different operations; an attacker wishing
to physically disrupt a process, for example, would
need to perform a long enumeration of PLCs in order
to find the precise one to attack.

In our research we decided to look for a different
approach by focusing on the PLC as the tool rather
than the target. In this case, we want to leverage the
PLC in order to access its maintainer, the engineering
workstation. Once owned, the engineering
workstation would be the best source for process-
related information and would have access to all the
other PLCs on the network. With this access and
information, the attacker can easily alter the logic
on any PLC.

The quickest approach to luring an engineer to
connect to an infected PLC would be for the
attacker to cause a malfunction or a fault on the
PLC. That will compel the engineer to connect
using the engineering workstation software as a
troubleshooting tool.

Through our research, we tried to execute this new
attack vector against multiple leading ICS platforms.
We found various vulnerabilities in each platform
that allowed us to weaponize the PLC in a way
that when an upload procedure is performed, our
specifically crafted auxiliary pieces of data would
cause the engineering workstation to execute our
malicious code.

!
PLC

Attacker

Engineering Workstation

Engineering Workstation

Engineering Workstation

Malicious Download
Procedure

Upload
Procedure

Upload
Procedure

Upload
Procedure

11Evil PLC Attack: Weaponizing PLCs © 2022 Claroty Ltd. All rights reserved

We believe that Evil PLC Attack is a new attack
technique. This technique weaponizes the PLC with
data that isn’t necessarily part of a normal static/
offline project file, and enables code execution
upon an engineering connection/upload proce-
dure. Through this attack vector, the goal is not the
PLC, such as it was, for example, with the notorious
Stuxnet malware that stealthily changed PLC logic
to cause physical damage. Instead, we want to use
the PLC as a pivot point to attack the engineers who
program and diagnose it and gain deeper access to
the OT network.

It’s important to note that all the vulnerabilities we
found were on the engineering workstation software
side and not in the PLC firmware. In most cases, the
vulnerabilities exist because the software fully trust-
ed data coming from the PLC without performing
extensive security checks.

Attack Scenarios
When looking at our Evil PLC attack vector, we reach
a conclusion that it could be utilized in both offen-
sive and defensive fashions. With that in mind, we
devised three different attack scenarios where this
new attack vector could be used:

• Weaponizing PLCs to Achieve Initial Access:
 Attackers could use weaponized PLCs in order to
 gain an initial foothold on internal networks,
 or even for lateral movement.

• Attacking Traveling Integrators: Attackers could
 target system integrators and contractors as a
 means of entry to many different organizations
 and sites around the world.

• Weaponizing PLCs as a Honeypot: Defenders
 could use honeypot PLCs to attract and attack
 possible attackers, thus deterring and frustrating
 would-be attackers.

Weaponizing PLCs to Achieve Initial Access

Currently, there are hundreds of thousands of ICS
devices exposed to the internet, as determined by
most public internet scanning services, including
Shodan and Censys. These internet-facing devices
usually lack security and allow anyone to access
them, modify parameters, and even alter their behav-
ior and logic via download procedures.

Protocol

Modbus

Niagara Fox

BACnet

Siemens S7

DNP3

Ethernet/IP

Censys Query

services.service_name=
`MODBUS`

services.port = 911 or services.
port = 4911 and niagara

services.service_name=
`BACNET`

(services.port = 102) and
services.service_name=`S7`

services.service_name=
`DNP3`

services.service_name=
`EIP`

of Exposed Devices

36,387

4,175

13,973

7,308

832

7,231

Top Countries

United States, South Korea,
France

United States, China, Moldova

United States, Canada, France

Japan, Germany, Italy

United States, Poland, China

United States, Canada, Spain

Examples of internet-exposed device statistics from Censys search engine.

https://www.shodan.io/
https://censys.io/

12Evil PLC Attack: Weaponizing PLCs © 2022 Claroty Ltd. All rights reserved

PLCs are classic entry points to critical infrastructure
when left publicly accessible. This point has
been discussed multiple times in CISA alerts and
vulnerability advisories, asking asset owners to
secure access to PLCs due to their unsecure nature.
Examples of such alerts/advisories are CISA Alert
AA20-205A and Shields Up. The key takeaway: In
order to perform an attack on the majority of PLCs,
the only tool needed is the commercial engineering
workstation software provided by the PLC venor.

In the last few years, we’ve seen examples of such
opportunistic attackers and learned their process of
exploitation. First, they identify internet-facing PLCs,
connect to them using commercial engineering
workstation software, and upload the current
project, which includes code and settings from
the PLC.

Then, the attackers will modify the logic of the
project, and perform a download procedure to
change the PLC logic with their modifications.
One example was the 2020 attack on Israel’s water
supply, where attackers exploited accessible
PLCs and attempted to flood the water supply
with chlorine.

Our research suggests that attackers could use the
internet-facing PLCs as a pivot point to infiltrate the
entire OT network. Instead of simply connecting to
the exposed PLCs and modifying the logic, attackers
could arm these PLCs and deliberately cause a fault
that will lure an engineer to them. The engineer, as
a method of diagnostics, will perform an upload
procedure that will compromise their machine. The
attackers now have their foothold on the
OT network.

A visualization of an attacker using the Evil PLC attack to gain a network foothold,
before infecting engineering workstations, and accessing the OT network.

PLC

Attacker

1 Attacker scans for internet-facing devices

2 Attacker infects the PLC with Evil PLC Attack

4 Attacker faults or stops the PLC

SHODAN

3 PLC is now
weaponized

5 Engineer connects
to diagnose the PLC
and gets exploited

Customer A

Engineer

//44818/TCP

Rockwell Automation/Allen-Bradley

Product name: 1766-L32BXBA C/21.02
Vendor ID: Rockwell Automation/Allen-Bradley
Serial Number: 0x60b74a98
Device Type: Programmable Logic Controller
Device IP: 129.168.2.2

!

Initial Access

https://www.cisa.gov/uscert/ncas/alerts/aa20-205a
https://www.cisa.gov/uscert/ncas/alerts/aa20-205a
https://www.cisa.gov/shields-up
https://claroty.com/2020/04/27/critical-infrastructure-attack-attempted-against-israeli-water-supply/
https://claroty.com/2020/04/27/critical-infrastructure-attack-attempted-against-israeli-water-supply/

13Evil PLC Attack: Weaponizing PLCs © 2022 Claroty Ltd. All rights reserved

Traveling Integrators: Another use case for this
new attack vector becomes clear when examining
modern OT management procedures. In many cases,
third-party engineers and contractors manage
and interact with many different OT networks and
PLCs. With that in mind, attackers could use those
system integrators as a pivot point, expanding their
reach drastically.

The attack would look like this: An attacker would
locate a PLC in a remote, less secure facility that is
known to be managed by a system integrator or

contractor. The attacker will then weaponize the PLC
and deliberately cause a fault on the PLC. By doing
so, the victim engineer will be lured to the PLC in
order to diagnose it. Through the diagnosis process,
the integrator will do an upload procedure and have
their machine compromised. After gaining access
to the integrator’s machine, which by design is able
to access many other PLCs, attackers could in turn
attack and even weaponize newly accessible PLCs
inside other organizations, broadening their control
even further.

A second Evil PLC attack vector involves targeting integrators and third parties using vulnerable engineering
workstation software.

! !!

Customer A

Engineering Workstation

PLCAttacker

Integrator Corp

Customer C

PLC

Customer B

PLC

1
Malicious
Download
Procedure

4
Download
Malicious

Logic

Download
Malicious

Logic

5
Engineering
workstations

are now
compromised

2 Upload Procedure

3

! !

Traveling Integrators

14Evil PLC Attack: Weaponizing PLCs © 2022 Claroty Ltd. All rights reserved

Weaponizing PLCs as a Honeypot:

From a defensive perspective, this new attack vector
could be used to lay traps for possible attackers.
By leveraging the fact that the attacker also uses the
same commercial tools as the engineers, defenders
can purposely set up publicly facing weaponized
PLCs, and allow attackers to interact with them.
These PLCs will act as a honeypot, attracting
attackers to interact with them. However, if an

attacker falls into the trap and performs an upload
from the decoy PLC as part of the enumeration
process, our weaponized code will execute on the
attacker’s machine. This method can be used to
detect attacks in the early stage of enumeration
and might also deter attackers from targeting
internet-facing PLCs since they will need to secure
themselves against the target they planned
to attack.

Research and Methodology

In the scenarios we will explain in this paper,
we assume the attacker or defender already has
network access to the PLC and the ability to
perform a download procedure. Attackers may gain
a foothold on an OT product in a number of ways
that have already been demonstrated, including
being legacy and “insecure by design”, the existence
of hardcoded keys (e.g. OVARRO TBox, Rockwell
Automation ControlLogix), authentication bypass
exploits (e.g. Schneider Electric M221), and other
broken-cryptography attacks that eventually allow
access to the PLCs.

We decided to focus on the following seven targets:

• OVARRO: TBox platform

• B&R (by ABB Group): X20 System platform

• Schneider Electric: Modicon platform
 (mainly M340, M580)

• General Electric (GE): Mark VIe platform

• Rockwell Automation: Micro800 Control
 Systems platform

• Emerson: PACSystems platform

• Xinje: XD Series platform

Weaponized PLC

Attacker

2 Attacker scans for internet-facing devices

3 Attacker uses an engineering workstation
to perform an upload procedure and

get currently loaded project

4 Weaponized PLC attacks the
engineer's machine.

SHODAN

1 PLC is deliberately
weaponized and

used as a bait online5 Attacker is now
compromised

Customer A

//44818/TCP

Rockwell Automation/Allen-Bradley

Product name: 1766-L32BXBA C/21.02
Vendor ID: Rockwell Automation/Allen-Bradley
Serial Number: 0x60b74a98
Device Type: Programmable Logic Controller
Device IP: 129.168.2.2

!

Honeypot PLC

The Honeypot PLC is a defensive tactic enabled by the Evil PLC attack.

https://www.forescout.com/resources/ot-icefall-report/
https://claroty.com/2021/03/23/blog-research-vulnerabilities-in-tbox-rtus/
https://claroty.com/team82/blog/critical-authentication-bypass-in-rockwell-software
https://claroty.com/team82/blog/critical-authentication-bypass-in-rockwell-software
https://claroty.com/2020/11/10/blog-research-schneider-m221-plcs/
https://conferences.computer.org/sp/pdfs/spw/2021/893400a383.pdf
https://ovarro.com/en/europe/solutions/monitoring--control-devices/rtus/tbox/
https://www.br-automation.com/en/products/plc-systems/x20-system/
https://www.se.com/ww/en/work/products/master-ranges/modicon/
https://www.ge.com/gas-power/products/digital-and-controls/mark-vie-ecosystem
https://www.rockwellautomation.com/en-il/products/hardware/allen-bradley/programmable-controllers/micro-controllers/micro800-family/micro820-controllers.html
https://www.rockwellautomation.com/en-il/products/hardware/allen-bradley/programmable-controllers/micro-controllers/micro800-family/micro820-controllers.html
https://www.emerson.com/en-us/automation/control-and-safety-systems/pacsystems
https://en.xinje.com/enxj_product_detail/enxj_xlxl.html

15Evil PLC Attack: Weaponizing PLCs © 2022 Claroty Ltd. All rights reserved

For each target/platform we tried to understand
the whole download/upload mechanism by reverse
engineering the firmware and the engineering
workstation software. Our goal was to find discrep-
ancies between what the PLC is using and what
engineering workstation is using. If we were to find
such inconsistencies, we could weaponize the PLC
through a malicious download procedure to store a
specifically crafted piece of data that won’t affect
the PLC, but when parsed by the engineering
platform it will trigger and exploit a vulnerability.

The research process of our Evil PLC Attack is
as follows:

1. Setup: Setting up a testbed environment with a
 target PLC, compatible engineering workstation,
 and I/O field devices.

2. Building “Hello World:” Reading PLC manuals,
 watching instructional videos, and building a
 benign program to control simple processes.

3. Project File: Explore what is being stored in a
 project file (metadata, configurations, textcode)
 and how the data is serialized.

4. Reverse Engineering: Exploring the PLC
 hardware and firmware in addition to the
 engineering workstation software.

5. Upload/Download Procedures: Understand the
 mechanics of the upload/download procedures,
 and what data is transferred through the
 proprietary protocol.

6. Protocol Analysis: Analyze the proprietary
 protocol and its functionality, and build a fully
 featured client.

7. Find Discrepancies: Understand the differences
 between what information is transferred and
 stored in the PLC, without being parsed or used.

8. Hunt for Vulnerabilities: Research all the parsing
 code flows of all pieces of information that the
 engineering workstation transfers to the PLC that
 are not used/modified on the PLC.

9. Weaponize: Using the client, implement a
 malicious download procedure that stores
 specifically crafted data on the PLC.

10. Exploit: Engineer connects to the PLC and
 performs an upload procedure. The engineering
 workstation parses the specifically crafted data
 we implemented. The parsing flow triggers the
 vulnerability and executes our code.

The testbed setup in Team82’s lab.

16Evil PLC Attack: Weaponizing PLCs © 2022 Claroty Ltd. All rights reserved

For each target vendor platform, the full ecosystem that we needed to research consist of:

• The engineering workstation software

• Engineering workstation project file

• Proprietary protocol (PLC Engineering workstation)

• PLC firmware

• Logic code (bytecode, textcode)

In many cases, the project files were simple
archive-based files with relatively easy-to-
understand structures; in most cases we started
from there. For example, the GE MarkVIe project
file contains textual XML files with easy-to-
understand naming conventions. It helped us to
understand the full scope of the types of data
the engineering workstation is generating and
transferring to the PLC.

Engineering Workstation PLC

Project File Logic Bytecode

Proprietary Protocol

Process components studied by Team82 in order to develop the Evil PLC attack.

A GE ToolBoxST project file.

17Evil PLC Attack: Weaponizing PLCs © 2022 Claroty Ltd. All rights reserved

However, some project files are stored in a proprietary format that we needed to analyze and reverse
engineer. For example, the Emerson engineering workstation, PAC Machine Edition, is using a
proprietary .SwxCF project file format that is binary-based MFC serialized data. This project file stores
hundreds of serialized C++ objects required for a complete operational project. To complete our research,
we wrote parsers for all the file formats and extracted the source code logic, metadata, and configuration
data of the projects.

Screenshot of a Emerson PAC Machine Edition .SwxCF project file. It contains binary-based MFC
serialized objects.

Another important aspect we needed to investigate was the proprietary protocol that each vendor
developed and implemented. Using this protocol, the engineering workstation software can communicate
with compatible PLCs and perform various actions including getting its status, perform Supervisory Control
And Data Acquisition (SCADA) operations, perform firmware upgrades, and most importantly for us,
perform upload/download procedures to modify or obtain the currently running logic. Some protocols were
easy to analyze while others were complex. Eventually we developed parsers and clients for all the
proprietary protocols in the scope of this research project.

For example, the Xinje XD engineering workstation, PLC Program Tool, is using a UDP Modbus-based
protocol to communicate with the PLC. Most of the functionality is implemented via Modbus read/write file
records and/or multiple registers Modbus function codes.

A Wireshark screenshot of Xinje protocol network traffic captured during an upload procedure.

18Evil PLC Attack: Weaponizing PLCs © 2022 Claroty Ltd. All rights reserved

In addition to the project file and the proprietary protocol, we researched the textcode (source code) and
the bytecode (compiled code). This was an important aspect of our work because it allowed us to perform
full-scale download/upload procedures and helped us automate and gain control over the PLC logic.
Although it wasn’t necessary in our research, in some cases we developed a partial/fully working compiler
and decompiler for the proprietary PLC bytecode.

High level process of our Emerson PDT bytecode decompiler.

Finally, for our exploit payload and demonstration purposes, we prepared a fake WannaCry ransomware
that simply presents the user with a scary looking popup ransom note.

3. Our decompiler dissects the
 bytecode and generates a
 ladder-diagram like scheme

2. Through a Download Procedure
 The engineering workstation
 transfers the bytecode to the PLC

1. Proficy Machine Edition complies
 user code into PDT bytecode

19Evil PLC Attack: Weaponizing PLCs © 2022 Claroty Ltd. All rights reserved

Findings

Using our thorough research methods, we were able to find seven previously unreported vulnerabilities that
allowed us to weaponize the affected PLCs and attack engineering workstations whenever an upload
procedure occurred. All of the findings were reported to the affected vendors in accordance with Team82’s
coordinated disclosure policy.

Let’s look at each of the seven targets we researched and how the Evil PLC attack impacts each:
 

OVARRO TBox Platform

OVARRO describes its TBox platform as follows:

“Our range of TBox RTUs open up new automation possibilities, simplifying systems engineering and
enabling critical industries across the globe to remotely control and monitor their applications. TBox allows
users to access networks with their mobile devices and PCs - anytime and anywhere. All TBox devices and
connected assets are protected by a state-of-the-art cyber security suite with authentication, encryption,
firewall, SSL/TLS, HTTPS, SMTPS, SFTP/FTPS and VPN” (source)

The TBox Remote Terminal Unit (RTU) platform provides HMI and PLC capabilities on a single platform with
versatile connectivity options. The devices are widely deployed in areas that have limited resources and
require remote connectivity such as water utilities, oil and gas, and other critical infrastructure sectors.

Our proof-of-concept demo payload.

https://ovarro.com/en/europe/solutions/monitoring--control-devices/rtus/tbox/

20Evil PLC Attack: Weaponizing PLCs © 2022 Claroty Ltd. All rights reserved

TBox’s controller is based on an ARM architecture and runs Linux as its operating system. From a security
research perspective, it was very convenient to work with a Linux kernel operating system due to the
extensive set of features it offers.

To program the TBox controller, one needs to use the TWinSoft engineering workstation software.
The C/C++-based engineering workstation allows operators to configure, control, and program the device.
All the communication between TWinSoft and the controller is done via a custom Modbus protocol over
TCP port 502. For example, to write a file to the disk, one can simply use the Modbus write functionality.
Eventually through our research we found multiple vulnerabilities that were disclosed to the vendor.

We discovered that a remote attacker could update the source project file (TPG) stored within TBox with a
malicious project file exploiting a vulnerability in TWinSoft as soon as the engineer performs an upload
procedure. OVARRO assigned CVE-2021-22650 to this vulnerability and fixed it in TWinSoft version 12.5 or
later. OVARRO also published an advisory TBOX-SA-2021-0004 discussing this vulnerability.

OVARRO TBox
LT2-530 RTU

Ovarro TWinSoft Engineering Workstation

Evil PLC Attack Demo: Ovarro TBox Platform.

https://claroty.com/2021/03/23/blog-research-vulnerabilities-in-tbox-rtus/
https://www.ovarro.com/content-media/assigned/102049/TBOX-SA-2021-0009_1.1.pdf

21Evil PLC Attack: Weaponizing PLCs © 2022 Claroty Ltd. All rights reserved

B&R (ABB) x20 Platform

B&R (by ABB group) describes the x20 platform as follows:

“With their compact and powerful products, X20 control systems offer the perfect solution for handling any
task large or small. B&R I/O products can be easily added to the controllers; the x20 “slice” system offers the
greatest possible flexibility here.” (source).

B&R X20 series offers a modular and compact PLC configuration. It is based on an Intel ATOM CPU (X86)
or ARM architecture, and runs VxWorks as its RTOS firmware. The x20 PLCs are deployed across many
European manufacturing plants, critical infrastructure sectors, and maritime environments.

In order to program the controller, engineers use the C/C++ based Automation Studio (AS) tools, which
allow them to write projects to the PLC, change its settings, and perform general maintenance. The X20
systems communicate with Automation Studio using proprietary protocols developed by B&R. Newer
Automation Studio versions use the ANSL protocol over TCP port 11169, and older versions use the protocol
INA2000 over TCP/UDP port 11159 (newer versions can also fall back to INA2000 in case ANSL session
can’t be established for some reason).

B&R X20CP1585 PLC B&R Automation Studio Engineering Workstation

A B&R ANSL packet.

https://www.br-automation.com/en/products/plc-systems/x20-system/

22Evil PLC Attack: Weaponizing PLCs © 2022 Claroty Ltd. All rights reserved

We found that if the PLC has not been sufficiently secured, an attacker could manipulate the stored project
information and inject a file with a path traversal name. Alternatively, a remote attacker may use spoofing
techniques to make B&R Automation Studio connect to an attacker-controlled device with manipulated
project files. When performing a project upload procedure in B&R Automation Studio, such crafted projects
will be loaded and opened in the security context of Automation Studio. This may result in remote code
execution, information disclosure and denial of service of the system running B&R Automation Studio.
B&R assigned CVE-2021-22289 and published an advisory on this topic.

Evil PLC Attack Demo: B&R X20 Platform.

https://www.br-automation.com/downloads_br_productcatalogue/assets/1640529306294-en-original-1.0.pdf

23Evil PLC Attack: Weaponizing PLCs © 2022 Claroty Ltd. All rights reserved

The M340/580 platforms are based on VxWorks
RTOS running on ARM processors and are the
replacement for the old Quantum series. They are
common in multiple verticals ranging from oil and
gas, manufacturing, and commercial building
management systems (BMS).

The engineering workstation software used to
manage, configure, and program the PLC is called
EcoStruxure Control Expert (previously Unity Pro).
The C/C++ software suite is IEC programming
software for Modicon PACs platforms. It helps
engineers with programming, debugging, and
operating software for Modicon M340, M580,
M580S, Premium, Momentum and Quantum ranges.

Schneider Electric Modicon M340/M580 Platform

Schneider Electric describes the Modicon M340 platform as follow:

“Modicon M340 mid-range PAC (Programmable Automation Controller) offers compactness, flexibility,
scalability, and robustness for the process industry and a wide range of demanding automation applications”
(source)

Schneider Electric Modicon M580 (left) and M340 (right) PLCs.

Schneider Electric Unity Pro Engineering
Workstation

https://download.schneider-electric.com/files?p_enDocType=Catalog&p_File_Name=DIA6ED2110104EN.pdf&p_Doc_Ref=DIA6ED2110104EN&_ga=2.246448193.458659450.1657211845-1362006569.1656587529

24Evil PLC Attack: Weaponizing PLCs © 2022 Claroty Ltd. All rights reserved

EcoStruxure Control Expert communicates with
compatible PLCs over a newly developed extension
to the Modbus protocol called UMAS. UMAS uses
Modbus reserved function code 90 (0x5A) and
has security features built-in. For example, some
elevated operations such as writing to physical
memory addresses (UMAS function 0x29) require
authenticating the session using a session key.

In our research, we were able to find a heap-based
buffer overflow that exists in XML decompression
function DecodeTreeBlock in AT&T Labs Xmill
0.7 (CVE-2022-26507). The Xmil is a serialization
process used to convert ASCII based XML data to
binary streams to be stored in the Schneider Electric
package bundle that is transferred and stored on
the M340/580 PLCs.

Using a download procedure, we were able to inject
to the PLC weaponized XMILL-compressed data.
When the engineer performs an upload procedure,
the engineering workstation reads the weaponized
XMILL-compressed data from the PLC and
decompresses it using the vulnerable decompress
function. This process triggers the heap-based buffer
overflow that leads to a RCE.

Since being reported by Claroty, Schneider Electric
has made security ehnancements to address all Xmill
and Xdemill vulnerabilities. Subsequently an advisory
has been released on how to fix these vulnerability.

Evil PLC Attack Demo: Schneider Electric Modicon M340/M580 Platform.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-26507
https://download.schneider-electric.com/files?p_Doc_Ref=SEVD-2021-222-02
https://download.schneider-electric.com/files?p_Doc_Ref=SEVD-2021-222-02

25Evil PLC Attack: Weaponizing PLCs © 2022 Claroty Ltd. All rights reserved

GE MarkVIe Platform

General Electric (GE) Gas and Power describes the
Mark VIe platform as follow:

“The Mark VIe distributed control system (DCS) is a
flexible platform for multiple applications. It features
high-speed, networked I/O for simplex, dual, and
triple redundant systems. The Mark VIe also offers
SIL3 capable safety system under one common
operator and engineering suite of tools. Mix and
match redundancy of controllers, networks and
IO allows users to meet the specific needs of each
application while helping reduce their cost.” (source)

The Mark VIe ecosystem is common within the
gas and power industries, including thermal, wind,
hydro, oil & gas, and nuclear facilities. According to
the GE website, there are more than 5,000 thermal
turbines, 40,000 wind turbines, and 300 plant DCS
installations across the globe.

The MarkVIe controller is based on PowerPC (Big
Endian) architecture and runs QNX Neutrino as its
RTOS firmware. The controller is maintained and
controlled by an engineering workstation software
named ToolBoxST. The engineering workstation
is built in .NET C# and communicates with the
controller via the SDI protocol over TCP port 5311.

In our research, we found a ZipSlip vulnerability in
ToolBoxST. We were able to weaponize a specific
archive on the controller with a special DLL we
prepared. Later, when read by the engineering
workstation in an upload procedure, we achieve
code execution.

GE fixed the issues we reported in ToolBoxST
Version 7.8.0 and ICS-CERT published advisory
ICSA-22-025-01 on this topic.

GE Mark VIe Controller
(model: IS220UCSAH1A)

GE ToolBoxST Engineering Workstation

https://www.ge.com/gas-power/products/digital-and-controls/mark-vie-ecosystem
https://www.ge.com/gas-power/products/digital-and-controls/mark-vie-ecosystem
https://www.cisa.gov/uscert/ics/advisories/icsa-22-025-01

26Evil PLC Attack: Weaponizing PLCs © 2022 Claroty Ltd. All rights reserved

Evil PLC Attack Demo: GE MarkVI Platform.

27Evil PLC Attack: Weaponizing PLCs © 2022 Claroty Ltd. All rights reserved

Rockwell Automation Micro Control Systems Platforms

Rockwell Automation describes the Micro800 Series as follows:

“Micro800 control systems offer a scalable and cost-effective micro control solution for small to large
standalone applications. These controllers are optimized for cost and performance for specific applications
with customization and flexibility in mind. You can buy only the functionality you need and use plug-in
modules to match your application requirements. Plus, boost productivity with reduced design time across
the control system using one programming software.” (source).

Rockwell Automation Micro Control Systems is a PLC platform series that includes Micro810,
Micro820, Micro830, Micro850, and Micro870. Micro800 PLCs are often used in smart manufacturing
automation processes.

Rockwell’s Connected Components Workbench (CCW) is a .NET C# based engineering workstation program
used to configure and communicate with Micro800 PLCs. It can also be used to configure PowerFlex drives,
PanelView 800 graphic terminals, and more. CCW enables quick asset discovery by integrating Rockwell’s
RSLinx Communications Servers used to quickly discover CIP-enabled devices. Therefore, a user can quickly
identify relevant devices in the subnet and upload their configurations to view and/or edit them.

Micro800 PLCs, like many other Rockwell devices, communicate with the engineering workstation mainly
with the Common Industrial Protocol (CIP) over EtherNet/IP, over TCP port 44818. In addition to the
standard classes and services defined as a part of CIP, CCW uses non-standard commands and services.
For example, during the upload procedure much of the data is read from the device by using the regular
CIP File operations class 0x37 but also using CIP class 0x350 with service 0x4b.

Rockwell Automation Micro820 PLC Rockwell Automation Connected Components
Workbench (CCW) Engineering Workstation

https://www.rockwellautomation.com/en-hu/products/hardware/allen-bradley/programmable-controllers/micro-controllers/micro800-family/micro800-training-videos.html

28Evil PLC Attack: Weaponizing PLCs © 2022 Claroty Ltd. All rights reserved

In our research, we found multiple vulnerabilities in CCW, among them, an unsafe .NET deserialization
vulnerability. Using the vulnerability we discovered, we managed to weaponize a Micro820 PLC using a
download procedure by embedding a specifically crafted serialized .NET object in the downloaded project.
The PLC doesn’t process the weaponized component and therefore the PLC operation is not compromised.
However, after the PLC is weaponized, any user running a vulnerable CCW version who performs an
upload procedure from the PLC will read the weaponized serialized object, which will result in arbitrary
code execution.

Rockwell Automation assigned CVE-2021-27475 and fixed the issue we reported in version 13.00.00 of
Connected Components Workbench. ICS-CERT published advisory ICSA-21-133-01 on this topic in addition
to other vulnerabilities we reported in CCW.

A Rockwell Automation CIP session performing a project upload procedure.

Evil PLC Attack Demo: Rockwell Automation Micro Systems Platform.

https://www.cisa.gov/uscert/ics/advisories/icsa-21-133-01

29Evil PLC Attack: Weaponizing PLCs © 2022 Claroty Ltd. All rights reserved

Emerson PACSystems Platform

Emerson describes PACSystems as follows:

“Emerson’s PACSystems™ adds a new dimension to the industrial control and automation landscape, allow-
ing production optimization and monitoring capabilities in the widest range of process and discrete industri-
al environments. No matter how fast your operation is growing, PACSystems brings control intelligence with
a real-world approach closer to the industrial edge.” (source).

The PACSystems product family has recently been moved from GE to Emerson and is now developed
under the Emerson brand. PACSystems consist of multiple product families including Rx3i, Rx7i, and others.
The Rx3i series of PLCs are well known with a long track record in the industry. Rx3i PLCs are widely used in
multiple industries ranging from water utilities, pharmaceuticals, and discrete manufacturing. The Rx3i
CPUs are based on x86 processors ranging from Intel Celeron/Atom to AMD G-Series CPUs and run the
VxWorks RTOS.

The engineering software used to configure PACSystems compatible devices is called PAC Machine Edition
(PME). The C/C++ based software provides PACSystems users an integrated environment to configure and
maintain control applications. It supports a wide range of devices such as HMIs, PLCs, VFDs, servos, and
edge devices related to the PACSystems product family.

In our research we were able to find a vulnerability in the handling of certain objects transferred from the
PLC to the PME software when performing an upload procedure. The specific vulnerable object is a ZIP file
which is extracted when the configuration is read. In the extraction process, the software does not protect
against a ZIPSlip attack.

Emerson Rx3i PLC Evil PLC Attack Demo: Emerson PACSystems Platform.

https://www.emerson.com/en-us/automation/control-and-safety-systems/pacsystems#:~:text=Emerson's%20PACSystems%20solutions%20are%20designed,control%20system%20and%20cause%20damage.

30Evil PLC Attack: Weaponizing PLCs © 2022 Claroty Ltd. All rights reserved

Emerson PAC Machine Edition

Using the ZIPSlip vulnerability, an attacker can store a file anywhere on the PME machine. To achieve code
execution we decided to leverage the vulnerability to overwrite one of the PME’s own DLLs that are loaded
after the upload procedure ends.

31Evil PLC Attack: Weaponizing PLCs © 2022 Claroty Ltd. All rights reserved

Xinje XDPPro

Xinje describes the XD Series of PLCs as follows:

“XD series PLC have diverse CPU units and expansions with powerful functions.” (source).

Xinje PLCs are common in the Asia-Pacific region, and are mainly used by companies based in China,
usually for process control automation.

The Xinje XD series devices are expandable PLCs manufactured by Xinjie. The ARM-based PLCs are
managed using the matching PLC Program Tool. For example a Xinje XD PLC will be managed by the Xinje
XD/E Series PLC Program Tool. The .NET C# based PLC Program Tool allows users to easily upload a project
by supporting device discovery and project upload.

The engineering workstation communicates with the PLC via Modbus UDP over port 502. The program
uses standard Modbus function codes which include read coils and read file record during upload, write file
record, and write multiple registers during download.

Xinje XD/E PLC Xinje XD PLC Programming Tool Engineering
Workstation

A Xinjie Modbus upload procedure.

https://en.xinje.com/

32Evil PLC Attack: Weaponizing PLCs © 2022 Claroty Ltd. All rights reserved

During our research, we managed to take advantage of the static project file vulnerabilities we previously
discovered (From Project File to Code Execution- Exploiting Vulnerabilities in Xinje PLC Program Tool) to
achieve code execution via project upload. This time, instead of weaponizing an offline project file, we used
download procedures to weaponize the PLC with a ZIPSlip-vulnerable archive, and then achieve code
execution when the project is uploaded to an engineering workstation.

Xinje XD Programing Tool version 3.5.1 is affected, and likely other versions. We began our disclosure
efforts in August 2020. More than a year later, Xinje acknowledged our disclosure in September 2021.
However, Xinje at that time refused to cooperate with us and asked us to stop communicating with them.
Eventually we assigned CVE-2021-34605 and CVE-2021-34606 and published a blog post discussing the
vulnerabilities and our disclosure efforts.

Evil PLC Attack Demo: Xinje XD Platform

https://claroty.com/team82/blog/from-project-file-to-code-execution-exploiting-vulnerabilities-in-xinje-plc-program-tool
https://claroty.com/team82/blog/from-project-file-to-code-execution-exploiting-vulnerabilities-in-xinje-plc-program-tool

33Evil PLC Attack: Weaponizing PLCs © 2022 Claroty Ltd. All rights reserved

Summary

34Evil PLC Attack: Weaponizing PLCs © 2022 Claroty Ltd. All rights reserved

Vendor

OVARRO

B&R (ABB)

Schneider

Electric

General

Electric (GE)

Rockwell

Automation

Emerson

Xinje

Platform

TBOX

X20 System

Modicon

(M340, M580)

MarkVIe

Micro Control

Systems

PACSystems

XDPPro

Arch

ARM

ARM/x86

ARM

PPC (BE)

ColdFire

x86

ARM

Tested Model

(CPU Module)

TBOX

LT2-530

X20CP1585

M340, M580

Mark VIe

IS220UCSAH1A

Micro820

Rx3i

XD/E PLC

RTOS

Firmware

Linux

VxWorks

VxWorks

QNX Neutrino

ThreadX

VxWorks

VxWorks

Engineering

Workstation

TwinSoft

Automation

Studio

EcoStruxure

Control

Expert

(Unity Pro)

ToolBoxST

Connected

Components

Workbench

(CCW)

PAC Machine

Edition

XD PLC

Program Tool

Protocol

Custom

Modbus

(Port 502/

TCP)

ANSL

(Port 11169/

TCP)

INA2000

(Port 11159/

TCP or UDP)

Modbus/

UMAS

(Port 502/

TCP)

SDI

(Port 5311/

TCP)

CIP

(Port 44818/

TCP)

SRTP

(Port 18245/

TCP)

Modbus UDP

(Port 502/UDP)

Root Cause

ZipSlip / Path

Traversal

ZipSlip / Path

Traversal

Memory

Corruption

(Heap

overflow)

ZipSlip / Path

Traversal

Unsafe

Deserialization

ZipSlip / Path

Traversal

ZipSlip / Path

Traversal

CVE

Advisory

CVE-2021-

22650

Advisory

CVE-2021-

22289

Advisory

CVE-2022-

26507

Advisory

CVE-2021-

44477

CVE-2018-

16202

Advisory

CVE-2021-

27475

CVE-2021-27471

CVE-2021-

27473

Advisory

CVE-2021-

34605

CVE-2021-

34606

https://www.ovarro.com/content-media/assigned/102049/TBOX-SA-2021-0009_1.1.pdf
https://www.br-automation.com/downloads_br_productcatalogue/assets/1640529306294-en-original-1.0.pdf
https://www.se.com/ww/en/download/document/SEVD-2021-222-02/
https://www.cisa.gov/uscert/ics/advisories/icsa-22-025-01
https://www.cisa.gov/uscert/ics/advisories/icsa-21-133-01
https://www.cve.org/CVERecord?id=CVE-2021-34605

35Evil PLC Attack: Weaponizing PLCs © 2022 Claroty Ltd. All rights reserved

SHOWCASES

Let’s demonstrate three examples of our proof-of-concept exploits in action.

Example No. 1: GE Mark VIe

Studying the Platform

GE MarkVIe is a flexible control system used in a variety of applications. MarkVIe and related controls use
ToolboxST as a software platform for programming, configuring I/O, trending data, and analyzing
diagnostics. At the controller level and at the facility level, it allows you to effectively manage equipment
assets with reliable, time-synchronized data.

The ToolBoxST engineering workstation and the MarkVIe controller communicate via the SDI protocol
over TCP port 5311. SDI is GE proprietary protocol for system configuration, maintenance, and real time data
and alarm management. The protocol is fairly simple and consists of a 12-byte header and payload data.
When a client connects to a Mark VIe controller they are faced with a challenge-response mechanism
(SDI Command 0x2b). Since the algorithm for the challenge-response is fixed, we were able to implement
our own client.

Using the engineering workstation, ToolBoxST, engineers can develop new programs. For example, we
created a new main program with a single function block—ADD—which takes two REAL tag variables as
inputs, adds them together and writes back to a third output variable.

SDI Packet

Command ID
(4 Bytes)

User Contect
(4 Bytes)

Data Length
(4 Bytes)

Payload

36Evil PLC Attack: Weaponizing PLCs © 2022 Claroty Ltd. All rights reserved

We then compiled the program and performed a download procedure in which both the compiled code and
the textual code are transferred into the controller. In this case, the MarkVIe controller runs a UNIX based
RTOS operating system called QNX. Owned by BlackBerry, QNX is a commercial Unix-like real-time
operating system with a microkernel, aimed primarily at the embedded systems market. Therefore, it was
quite easy to explore the file-system and see what has changed under /usr/app/active or /usr/app/A.

For our code manipulation research, there were three important files:

• device.zip

• An archive with XML files that describe the current running project. This also includes a high-level
 representation (XML) of the current loaded program.

• device.zip.crc

• CRC check for device.zip archive.

• program{NAME}.pcode

• pcode property binary format to store the program bytecode. This bytecode will be translated and
 executed by the controller.

ToolboxST main program with a single ADD function block.

37Evil PLC Attack: Weaponizing PLCs © 2022 Claroty Ltd. All rights reserved

MarkVIe controller file system - /usr/app/A after a
successful download procedure

For now, we care only about the textual and binary code of the current running program:

• Binary code: programprog1.pcode

• Used by the controller, MarkVIe, to execute the logic code (bytecode) that was programmed and
 compiled on the engineering workstation machine. The controller does not use the XML files because
 they are being used for display purposes only.

• Textual code: device.zip _Prog1.xml

• Used by the engineering workstation, ToolboxST, to show the engineer what code is running on the
 controller. The engineering workstation is not using the binary code.

The textual code, which is XML-based, is easy to understand. We can see a clear description of the function
block including its in and out pins.

38Evil PLC Attack: Weaponizing PLCs © 2022 Claroty Ltd. All rights reserved

The pcode file that contains the bytecode is a proprietary binary format that represents the .NET assembly
objects observed in the XML. In other words, the output of the compilation process is an intermediate
language bytecode that will eventually get executed on the controller. By reverse engineering the GeCss.
Util.BinaryPcodeReader class and the relevant WritePcode functions (Blockware), we were able to create
our own compiler/decompiler to construct our own pcode files with program records.

XML files generated based on the engineer’s code logic (function blocks).

programprog1.pcode file content.

39Evil PLC Attack: Weaponizing PLCs © 2022 Claroty Ltd. All rights reserved

Finding the Vulnerable Path: (ICSA-19-281-02)

To recap, ToolBoxST is used to configure and maintain MarkVIe and other controllers. One of the options
it allows is an upload procedure that will retrieve information from the controller and create a new project
based on the retrieved information. We discovered that one of the obtained files is a ZIP file named
device.zip (located at /usr/app/active/device.zip on the device) which usually contains XML files with
information about the project such as the name of the project, programs, tags, etc.

After ToolBoxST obtains this file from the controller via a SDI protocol upload procedure (SDI command
0x25), it extracts all the files from the zip file without any validation or sanitizing on the file names. We found
that ToolBoxST is vulnerable to a ZipSlip attack because an outdated version of Ionic .NET ZIP library is used
to handle this process.

Zip files include a directory tree, usually used to create sub-directories within the extracted zip directory.
However, the path of a sub-directory can also be “..”. Such paths are not sanitized by the zip implementation
used in ToolBoxST. As a result, an attacker can chain several such paths in a row to get to the drive root
(e.g. “C:\”). Then, by adding the path of the expected folder the files from the project file will be extracted
to arbitrary locations on the machine’s file system. This is also known as a ZipSlip attack.

• Example: ..\..\..\..\..\..\..\..\..\..\..\..\..\..\temp\poc.txt

The code flow that leads to this vulnerability is as follows. First, below we have the DoUpload function
with the vulnerable code flow marked:

40Evil PLC Attack: Weaponizing PLCs © 2022 Claroty Ltd. All rights reserved

When the upload finishes, the OnFinish function is called to extract the device.zip file with the project
information, below.

Finally, the code that extracts the content of the ZIP file. As you can see the .NET Ionic library is used to
extract the content of the ZIP, below.

The vulnerable extract code in the engineering workstation, ToolBoxST.

41Evil PLC Attack: Weaponizing PLCs © 2022 Claroty Ltd. All rights reserved

To get immediate code execution, we need to find and override a DLL that is loaded after the upload
procedure. We chose BlockwareEditor.dll because we noticed that the C:\Program Files\GE Energy\
ToolboxST\V04.07.05C\BlockwareEditor.dll DLL is loaded right after the upload procedure ends.
We patched it so when this DLL gets called, our injected code will get executed.

Demo
We first prepared the payload: Patching CIL code in BlockwareEditor.dll is a good target because the
DLL is loaded immediately after an upload procedure. We injected our CIL code to one of the functions we
knew would get executed, below.

Next, using SDI command 0x25 we performed an upload procedure and retrieved the /usr/app/active/
device.zip file from the controller. We patched the archive file, and added our malicious DLL with a special
traversal path name. We fixed some CRCs and transferred the archive back to the controller using SDI
commands 0x18, 0x19 to start the download procedure and command 0x0d to write the malicious archive.
Now the controller is weaponized, below.

42Evil PLC Attack: Weaponizing PLCs © 2022 Claroty Ltd. All rights reserved

We “waited” (in our lab) for an engineer to perform an upload procedure through ToolBoxST.
When the upload is complete, ToolBoxST parses the infected archive file and our embedded file triggers
the vulnerability.

43Evil PLC Attack: Weaponizing PLCs © 2022 Claroty Ltd. All rights reserved

The exploit was successful and the engineer’s machine is now infected with our fake ransomware.

44Evil PLC Attack: Weaponizing PLCs © 2022 Claroty Ltd. All rights reserved

Example No. 2: Schneider Electric M580

Studying the Platform

Schneider Electric’s M580 is a popular series of PLCs that are used in many different industrial sectors
from water and wastewater facilities, oil & gas, food and beverage production, and even mineral and
metal refinement.

In order to interact with M580 PLCs, engineers use Schneider Electric EcoStruxure Control Expert
engineering software, formerly called Unity Pro. Through this program, engineers can interact with M580
PLCs, change their configurations, settings and even program the PLC itself.

When analyzing how the engineering software communicates with M580 PLCs, we discovered that
Schneider Electric chose to use a customized proprietary protocol that extends the Modbus protocol.
Schneider’s implementation uses a custom Modbus function code, 0x5A, followed by an internal function
code used to communicate with supported devices. This new protocol is called UMAS

UMAS

In order to add capabilities and features, UMAS uses an internal function code following the 0x5A Modbus
function code, to distinguish between different UMAS operations. Using this second function code, a UMAS
client can perform a range of different requests and operations, ranging from performing queries about the
device itself (e.g. 0x4 Get PLC Status), reading/writing data to the device (e.g. 0x20 Read Memory Block,
0x21 Write Memory Block), and more. In addition, UMAS also offers security mechanisms such as
session-based authentication (a feature missing from Modbus), requiring clients to authenticate using their
application password to start a session before performing certain operations.

For example, in order to write to an M580 PLC’s physical memory, a client must use the UMAS function code
0x29; however this function code requires elevation, requiring the client to supply a valid session ID. The
UMAS client must first acquire a session ID through the use of two function codes—UMAS function 0x6e for
supplying the user password hash and UMAS 0x10 to reserve a session key. Only after retrieving the key will
they be able to perform the request.

Schneider Electric UMAS Packet Structure.

UMAS Packet

Modbus Header

Transaction ID
(2 Bytes)

Modbus Header
(8 Bytes)

Protocol ID
(2 Bytes)

UMAS Session
(1 Byte)

Length
(2 Bytes)

UMAS Function
(1 Byte)

Unit ID
(1 Byte)

UMAS Payload

Function Code
= 0x5A (UMAS)

(1 Byte)

45Evil PLC Attack: Weaponizing PLCs © 2022 Claroty Ltd. All rights reserved

Project Structure

When looking at the way projects are built in Schneider Electric EcoStruxure Control Expert engineering
software, we can see that a project is actually compressed data with the suffix of *.stu or *.sta.
When decompressing the project file, we learn that it contains two internal file types:

• Metadata Files (*.ctx): Files containing metadata about the project

• Project Files (*.db, *.apx): Files containing the actual configurations, settings, and logic code.

When looking for possible attack surface, we started looking at the *.apx files. We learned that those files
are actually binary files composed of many different subsections, each with a header containing section
type, ID, offset and size, and the section data itself. Different sections can contain different types of data
such as code sections including compressed textcode and compressed bytecode of the PLC logic.

Contents of the compressed project file in Schneider Electric
EcoStruxure Control Expert.

46Evil PLC Attack: Weaponizing PLCs © 2022 Claroty Ltd. All rights reserved

Finding The Vulnerability: Out-Of-Bounds Access

When an engineer performs an upload procedure, the engineering workstation pulls the project files saved
on the PLC. After decompressing the files, the program continues to parse the project files, some of which
are *.apx files which are composed of many different section types. One section type in particular caught
our interest: compressed XMLs.

Whenever the engineering workstation encounters this section type, it needs to decompress and parse it
as XML, and to do so Schneider Electric chose to use an open source tool called Xmill and Xdemill, which
handles the XML compression and decompression for the program. The Xmill and Xdemill tools offer ef-
ficient methods of compression for XML, transforming XML-based data from a textual representation to
compressed binary format, offering both great compression ratio and speed. The Xmill library is based on
research and an academic paper written in collaboration with the University of Pennsylvania. Because the
Xmill project is open source, we determined that we should start our research looking into Xmill and Xdemill.

When looking for the main parsing logic of those tools, we reached the DecodeTreeBlock function in the
Decode.cpp file. This function parses the given compressed XML until it reaches the end of the file
it received, below.

A parsed *.apx file, showcasing its internal sections’ header and data.

https://www.csd.uoc.gr/~hy561/Data/Papers/xmill-sigmod00.pdf

47Evil PLC Attack: Weaponizing PLCs © 2022 Claroty Ltd. All rights reserved

In order to parse each XML tag, the program reads an ID from the given compressed XML stream using the
LoadSInt32 function, and then continues parsing the data according to the ID it parsed. From the parsed
ID, the program extracts another variable named is_neg, which indicates whether the tag the program will
parse is an XML label or inner-text, which leads the program to different parsing code paths. If this flag is
raised, the program executes the function, UncompressText.

Then, the program will use the ID it parsed in order to retrieve the correct object pointer from a list of object
pointers (called blockarray), using the ID as the object’s offset in the array. After retrieving the object, the
program will use it to invoke the UncompressText function. As it turns out, Xdemill fails to check that the ID
it reads is actually within the blockarray bounds.

Abusing this, and the fact that the ID is taken from the compressed XML blob which is under our control,
we were able to supply an ID that is longer than the length of the blockarray list. Later on, the program
will use this ID as an offset in the blockarray list, however since we supplied a higher number than the list’s
length, the program will access memory that is not part of the list, instead accessing “random” memory.
This gave us an out-of-bounds access vulnerability in the Xdemill program, and we moved forward onto
creating an exploit for this vulnerability. We started to analyze the program’s memory structure, looking for a
way to control the memory that the program will access whenever we supply a big ID value.

By controlling this object’s pointer, we will be able to craft a fabricated object that will execute our code
whenever the program tries to execute the uncompressText function using this object. Luckily enough,
when analyzing the memory near the blockarray list, we found that it contains pointers to the uncom-
pressed XML data that is under our control as we encode the compressed XML data and perform download
procedure to set it on the PLC.

48Evil PLC Attack: Weaponizing PLCs © 2022 Claroty Ltd. All rights reserved

This meant that we had a pointer that pointed to data that is fully under our control. Using this, we could
create a fake object in memory with a fake function VTable from which the program will try to invoke a
function. Using this primitive, we constructed such an object, so when the program tries to access it, a small
ROP chain will be executed, resulting in remote code execution.

Demo

After creating the malicious *.apx file that will trigger our code execution vulnerability, we implanted it into
a legitimate project file. We then use the UMAS protocol in order to download the malicious project file onto
a M580 PLC, weaponizing it.

We then “waited” (in our lab) for an engineer to perform an upload procedure through Schneider Electric
EcoStruxure Control Expert. When the upload is complete, EcoStruxure Control Expert will parse the
infected project file, and the malicious *.apx file in particular, which will trigger our vulnerability, below.

obj prt Object
 – vtable
 – members

Object
 – vtable
 – members

Object
 – vtable
 – members

Malicious
XMILL

Compressed
binary XML

Get tag
with ID 1

Get tag
with ID n+1

Fake Object
 – vtable
 – members

ROP CHAIN

obj prt

obj prt

...

obj prt

0

1

2

n

fake obj prt

Process memory data

Heap Memory

blockarray list

Upcompress
text()

CVE-2022-26507 high level exploit chain diagram.

49Evil PLC Attack: Weaponizing PLCs © 2022 Claroty Ltd. All rights reserved

The exploit was successful and the engineer’s machine is now infected with our fake ransomware, below.

50Evil PLC Attack: Weaponizing PLCs © 2022 Claroty Ltd. All rights reserved

Example No. 3: Rockwell Automation Micro800

Studying the Platform

Rockwell Automation Micro800 is a versatile and modular series of PLCs, usually seen in smart manufactur-
ing and process automation. In order to interact with and program the Micro800 series of PLCs, engineers
use the Connected Components Workbench (CCW) software, which offers engineers the ability to configure
their Micro800 devices, program them, and even to create integrations between the PLCs and an HMI screen.

Using CCW, engineers can create a project for the PLC that contains basic configurations, metadata about
the project, and a series of programs that could be programmed to the PLC using Ladder Diagram (LD),
Structured Text (ST) or Function Block Diagram (FBD).

The CCW program, allowing engineers to program and interact with Micro820 PLC devices.

In order to perform a procedure such as a project download, the CCW engineering workstation commu-
nicates with Micro800 PLCs using the Common Industrial Protocol (CIP) protocol. The CIP protocol is an
object-oriented protocol at its core, where each I/O device exports a set of objects, defining an interface
for communications. For example, a device could export a file object, allowing remote users to perform
various actions such as file read and write. Using this core concept, CIP-enabled devices could use a
predefined set of common objects, or add proprietary ones to suit their specific use case.

51Evil PLC Attack: Weaponizing PLCs © 2022 Claroty Ltd. All rights reserved

Project Structure

Before looking for a vulnerability in the upload procedure, we first need to fully understand what is
transferred in the upload/download procedures, and the many parts that assemble a project. When looking
at the network traffic when performing an upload procedure, we see that the PLC sends the engineering
workstation a 7z compressed file, which in our case is named IDS00103, along with a few other files.
When looking at the content of this file, we see all of the files that assemble the project:

Using the CIP protocol, CCW performs various actions and interacts with the Micro800 series of PLCs.
To transfer data CCW uses mostly CIP classes File Object (0x37) and vendor-specific object 0x350.
Using both class objects, the CCW software can set or get file data information from/to the PLC.

A CCW download procedure using CIP class 0x350 to transfer data to the PLC.

52Evil PLC Attack: Weaponizing PLCs © 2022 Claroty Ltd. All rights reserved

Content of the compressed file transferred during the upload procedure.

After performing the upload procedure, we see that the PLC sent the engineering workstation three
types of files:

• Metadata Files: files that provide metadata information about the project and the PLC.

• Engineering Workstation Project Files (*.annex): files that contain all information relevant to the
 engineering workstation project. These files are parsed by the engineering workstation alone, and are
 used in the upload procedure by the workstation to create the project.

• Compiled Programs (*.otc): files that contain bytecode in the intermediate language that the PLC uses.
 These files are actually the program that the engineer created, and are later on executed by the PLC using
 its runtime. Those files are not sent as part of the compressed file, instead being sent separately.

Finding The Vulnerability: Unsafe Deserialization

In order to understand the possible attack surface on the engineering process, we started examining what
type of information is stored in the project files the engineering workstation pulls from the PLC. As it turns
out, a project is composed of many XML-based files holding information about the project itself and its sub-
components. This includes the project’s programs and their code blocks, the list of variables and tags those
programs use, and general settings about the project and the PLC. This information is saved in the XML as
tags of a corresponding type, telling the engineering workstation what the project structure and data is. For
example, a program’s variable will be represented in those XML by a variable tag, having its name, type and
other details represented with an attribute in this tag.

53Evil PLC Attack: Weaponizing PLCs © 2022 Claroty Ltd. All rights reserved

Content of an *.annex file.

When looking further into the content of said files, one file type caught our attention in particular:
the .annex files. When we read the file content, we found out that those files contained .NET serialized data.

We immediately noticed that the content of the AnnexedData contained a serialized .NET object,
because of its very unique signature. This made us believe that a deserialization vulnerability is possible on
this platform.

Before we are able to understand the vulnerability, we must have a basic understanding of what is a
serialized object, and what is the serialization and deserialization process.

A serialized object is a binary or textual representation of the in-memory state of an object, allowing
programs to transfer an object from one process to another, or to store an object for later use. Serialization
is the process of taking the state of an object and transforming it into an independent representation that
could be understood to recreate this object, while deserialization is the exact opposite, it is the process of
transforming this object representation and recreating the object.

While serializing and deserializing objects sounds pretty simple and secure, in reality it’s anything but.
Many vulnerabilities exist that abuse the ability to force a program to create arbitrary objects that are made
possible because of the deserialization process, and many applications fall victim to this vulnerability type.
It is important to never deserialize information from an untrusted source, and to limit the classes that can be
created by the deserialization process, only allowing for a set of intended classes to be deserialized.

54Evil PLC Attack: Weaponizing PLCs © 2022 Claroty Ltd. All rights reserved

Demo

Before weaponizing the PLC, we first need to perform an upload procedure in order to retrieve the
current project that was set up on the PLC. This netted us with a ready-to-use project, that was the base
for our vulnerability.

The project base we gained by performing an upload procedure.

We then prepared our payload: a modified serialized object that will result in arbitrary code execution
whenever it will be deserialized. In order to create this object, we used the ysoserial.net library, which
allowed us to create the malicious serialized object, for example:

Then, we replaced the regular serialized object that the program intended to deserialize with our malicious
object, packed it in the project file, and performed a download procedure, weaponizing the PLC with our
malicious project.

https://github.com/pwntester/ysoserial.net

55Evil PLC Attack: Weaponizing PLCs © 2022 Claroty Ltd. All rights reserved

The only thing left to do is wait for an unsuspecting engineer to perform an upload procedure through CCW.
When the upload is complete, CCW parses the infected *.annex file and our embedded serialized object
will be deserialized, resulting in code execution.

The weaponized *.annex file, containing our modified serialized object payload.

The exploit was successful and the engineer’s machine is now infected with our fake ransomware, below.

An engineer performing an upload procedure on our weaponized PLC,
which will result in arbitrary code execution.

56Evil PLC Attack: Weaponizing PLCs © 2022 Claroty Ltd. All rights reserved

57Evil PLC Attack: Weaponizing PLCs © 2022 Claroty Ltd. All rights reserved

Mitigations

All of the vulnerabilities described in this paper were reported to the affected vendors in accordance with
Team82’s Coordinated Disclosure policy. Most vendors issued fixes, patches, or mitigation plans against the
Evil PLC Attack.

That said, getting to 100% patching level, especially in critical infrastructure, is not easy and therefore
requires additional mitigation steps to reduce the risk of the Evil PLC Attack. Here are a few we recommend:

In the Evil PLC attack technique, weaponizing is the first step and therefore, we recommend limiting physical
and network access to PLCs as much as possible. There is no question that such devices shouldn’t be
accessible externally or exposed online. But also internal access should be limited to authorized engineers
and operators only.

The process of securing the connection to your PLCs is long, tedious, and when implemented incorrectly
even ineffective, so we recommend implementing the following:

• Network Segmentation and Hygiene: The first step in securing the connection to your PLCs is limiting
 access by strictly segmenting your network. Allow access to your PLCs only to a small set of engineering
 workstations, which reduces the attack surface in your network considerably.

• Use Client Authentication: It is crucial to configure the PLC to use a client authentication mechanism to
 validate the identity of the client, the engineering workstation. Currently, some vendors implement such
 communication protocols, where instead of allowing any engineering workstation to communicate with
 the PLC, only a specific and predefined set of engineering workstations are able interact with the PLC,
 by requiring the engineering workstation to present the PLC with a certificate. For example, B&R by
 ABB group supports TLS client authentication which can be configured in its Automation Server
 engineering workstation.

B&R Automation Studio SSL Configuration

58Evil PLC Attack: Weaponizing PLCs © 2022 Claroty Ltd. All rights reserved

• Even Better, PKI: A more robust solution is to use a full Public Key Infrastructure (PKI) system to validate
and encrypt all traffic between the client, engineering workstation, and the server, the PLC. Mutual
authentication, more commonly referred to as mutual TLS, helps to significantly reduce the risk of
someone hacking your OT assets. However, the reality is that PKI is not yet implemented in many ICS
product lines. Having said that, there are some vendors that already offer full-blown PKI systems
including:

• Rockwell Automation CIP Security

• Siemens TIA v17

• GE ToolsBoxST Secure Mode

• Network Traffic Monitoring: The Evil PLC attack vector involves performing download/upload procedures
to/from a PLC. As such, it is important to monitor your OT network traffic and detect these types of
events in particular, and if such a procedure would occur in an unexpected situation, it could indicate an
exploitation attempt.

• Stay Up To Date: As attackers and defenders alike research this new attack vector further, more
vulnerabilities like the ones shown above will be discovered, and OT vendors will patch those
vulnerabilities. It is important to stay up to date with your OT software, which will protect you from
attacks exploiting those one-day vulnerabilities.

Rockwell Automation FactoryTalk Policy Manager - CIP Security Management Platform

https://literature.rockwellautomation.com/idc/groups/literature/documents/at/secure-at001_-en-p.pdf
https://support.industry.siemens.com/cs/document/109784438/delivery-release-tia-portal-v17?dti=0&lc=en-US
https://digitalsupport.ge.com/servlet/fileField?retURL=%2Fapex%2FKnowledgeDetail%3Fid%3DkA31A000000TcdRSAS%26lang%3Den_US%26Type%3DDocumentation__kav&entityId=ka31A000000HCPRQA4&field=File_1__Body__s

59Evil PLC Attack: Weaponizing PLCs © 2022 Claroty Ltd. All rights reserved

SUMMARY

We developed a unique technique that we named Evil PLC Attack, and through the process of developing
this attack vector, we found a number of vulnerabilities in products from marketing-leading ICS vendors
including Rockwell Automation, Schneider Electric, GE, B&R, Xinje, OVARRO and Emerson. Through this
attack vector, a PLC is weaponized to the extent that when an engineer attempts to configure or
troubleshoot it, the engineer’s machine is compromised.

Adversaries may compromise and infect a PLC to implant malicious data and/or project files such that
when an engineering workstation will perform an upload procedure, the PLC will transfer the malicious
data to the engineering workstation that will parse it, trigger the vulnerability, and code will get executed
on their machine.

Our work improves the security of PLCs, which are key elements of all automated industrial processes.
Specifically, we helped further lock down the integrity of data uploads and downloads used by engineers to
ensure the safety of processes across numerous critical industries.

