
LLM Safety
Assessment
The Definitive Guide on
Avoiding Risk and Abuses
A Report from Elastic Security Labs

Table of
Contents

Introduction 	 3

Securing against LLM abuses	 4

Common LLM threat techniques	 7

Conclusion	 18

3 | LLM Safety Assessment

Introduction
The generative artificial intelligence (AI)
debate has engrossed the software industry
and beyond ever since ChatGPT’s reveal in
late 2022. For a year and a half, companies
and individuals have rushed to share
their thoughts on disruptive generative AI
technologies, often glossing over specific
merits and risks.

The lack of clarity around these emerging
technologies has left many organizations
concerned and overwhelmed, with some
companies denying usage entirely. Others
have permitted it to stay innovative, either
allowing for restricted use or brushing off
security concerns entirely. Regardless of
the stance taken, generative AI isn’t going
away, but it must be implemented and
utilized safely. In order for this to happen,
security teams must understand how these
technologies can be abused.

With emerging technologies, companies
often believe that they must keep their
discoveries to themselves to gain an
advantage against competitors. But
obfuscating advancements does not
maintain security, especially when the
boundaries are being pushed daily.
Developers must be willing to democratize
the knowledge gained through the trial and
error of emerging technologies, especially
when this knowledge can impact the threat
landscape.

While generative AI’s applications are
growing by the day, the most prevalent
example — the large language model (LLM)
— has exploded in popularity for its ability to
generate text-based insights, suggestions,
conversions, and more. This report will
discuss exactly how LLMs can be abused,
explore the ten most common vulnerabilities,
and highlight some of the mitigations
available today to keep LLMs safe.

4 | LLM Safety Assessment

Securing against LLM abuses
What is an LLM?
LLMs begin with generative AI, which
describes systems capable of creating
text, code, audio, and video based on user
queries or prompts. Large language models
are the neural network language models
underlying generative AI. While LLMs can
be traced back to 2017 with Attention is All
You Need (Vaswani et al.), the adoption of
the technology exploded with the release
of OpenAI’s chatbot ChatGPT. The human-
like linguistic capabilities, particularly the
ability to converse directly with AI models
that can produce high-quality text, made it
the fastest-growing consumer application
in history.

While the underlying techniques powering
these chatbots are not new, the landscape
shift came when OpenAI’s launch of GPT-3.5
provided a consumer-friendly conversational
interface that made the technology widely
accessible. For the first time, the cutting-
edge technology was no longer exclusive
to the world’s top AI research labs and
practitioners with access to specialized
hardware resources and millions in budget.

Today, the latest advancements in foundation
models — general-purpose models trained
on broad datasets that can be further
modified or fine-tuned for more specific
tasks — are offered via fully managed APIs.
The highly specialized and cost-intensive
process of designing and deploying a neural
network architecture from scratch has been
replaced by managed services and UIs
offering pre-trained models that perform
well on general tasks off the shelf. The
latest foundation models include proprietary
offerings from OpenAI (GPT-4), Anthropic
(Claude 3), Google (Gemini, PaLM), and
Amazon (Titan), alongside open-source
models from Facebook (LLaMA) and Mistral
(Mixtral 8x-7B).

Even more impressive is the explosion of
the open-source ecosystem for integrating
generative AI into traditional software
applications. Every major public cloud
provider now allows developers access to
their own proprietary base models as well
as a wide range of open-source models
and managed services for ingesting
organizational and domain data.

5 | LLM Safety Assessment

Risks with LLM
implementations
LLMs' rapid embrace and continued
innovation has resulted in a rush to embed
the technology into business applications,
providing more opportunities than ever
for adversaries to take advantage of their
vulnerabilities. In particular, hallucinations,
data leakage, and toxicity are well-known
limitations of LLM implementations that must
be monitored and mitigated.

Hallucinations encompass irrelevant or
factually inaccurate information provided as
a response when the model is unsure how
to answer. They are usually due to various
aspects of the development process, training
data biases or quality, training objectives,
or a combination of all these elements.
Hallucinations can result from mistakes in the
model (as listed previously) or be triggered
by prompt injection methods in which a user
queries a model in a way designed to subvert
its intended usage. This means that model
output can be well-written, plausible, and
completely made up.

Data leakage can occur in both the prompt
and the response. In the former, a user
shares private or confidential information
with the model; while in the latter, the
LLM’s response contains PII or proprietary
information memorized by the model during
the training process. Specifically, LLMs
are trained on massive quantities of text
data, much of it acquired directly from the
Internet. A consequence of this approach

is that personal information may be directly
embedded into the training dataset.

The ability to enhance and adapt pre-
trained models to downstream applications
— providing additional domain and task-
specific data to a pre-trained model, either
through fine-tuning (directly updating
the parameters of pre-trained models
using a specific dataset) or with retrieval-
augmented generation (RAG) — is a
common practice. Effectively, this means
that intellectual property and sensitive
organizational information may also be
stored within fine-tuned models.

While fine-tuning is often necessary
to use LLMs in specialized domains,
foundation models can also be fine-tuned
to circumvent the safeguards originally
architected into the pre-trained LLMs via
alignment tasks — offering an avenue for
an attacker to extract private information.
For example, researchers demonstrated
that they could bypass OpenAI’s controls
on answering privacy-based queries to
extract additional PII by fine-tuning GPT-3.5
on only ten PII samples.¹

With our implementation,
your data is stored in
Elastic. We query it and
then provide relevant
results as context to an LLM
via context window.

¹The Janus Interface: How Fine-Tuning in Large Language Models Amplifies the Privacy Risks, by Xiaoyi Chen, Siyuan
Tang, Rui Zhu, Shijun Yan, Lei Jin, Zihao Wang, Liya Su, XiaoFeng Wang, Haixu Tang, used under a CC BY 4.0 DEED license,
available at https://arxiv.org/abs/2310.15469

6 | LLM Safety Assessment

While related to data leakage, toxicity refers
to both explicit outputs such as abusive
language and profanities and implicit outputs
like harmful words or concepts about people.
Classification models, often called toxicity
classifiers, have been successfully employed
to detect explicit toxicity; however, the level
of nuance required to detect implicit toxicity
has posed a greater challenge. Advanced
linguistic abilities like metaphors, sarcasm,
and circumlocution are typically employed in
these LLM responses. A well-known toxicity
incident is the launch of Tay after X users
tweeted inflammatory content at the chatbot
and they were later incorporated into the
model in a continuous training process.

While it’s important for organizations to be
aware of the limitations that LLMs have,
there are a series of development practices
and security methods that can reinforce
the technology.

Responsible LLM
development
A first step towards compliant, secure,
and safe LLM usage is understanding and
prioritizing the risks associated with each
AI deployment. Risk to the business can be
actively mitigated with awareness of and
adoption of best practices alongside the new
protections and methods employed by AI
developers and security teams.

One technique model maintainers should
leverage to build strong and secure LLMs is
known as a generative adversarial network
(GAN). In a GAN scenario, two neural
networks compete in a zero-sum game.
The networks each attempt to create an
advantage for their respective network by
creating a disadvantage for their opponents.
For example, one network could operate to
gain access to a protected system, place an
implant, maintain persistence, and exfiltrate
data. While this occurs, the other network
tries to detect the adversary's actions and
deploy countermeasures to contain and/or
evict them. GAN training is a way to identify
weaknesses and release enhancements to
your AI system.

Employing GANs in adversarial attacks as a
part of AI red teaming is great for exploring
the limitations of LLM-based applications.
But organizations can prepare even more
by understanding the potential risks to their
business and protecting against the most
common attack technique.

Leveraging a mechanism to
“bring your own model” is an
effective mitigating action
for LLM attacks. Elastic
has built this capability
into its generative AI
Assistant, enabling users to
deploy LLMs that meet strict
security standards.

7 | LLM Safety Assessment

Common LLM threat techniques
LLMs represent a significant change to
the enterprise attack surface, one that is
likely to have far-reaching consequences
for the ways we perceive risk. It’s already
happening, and preparing for the threat
landscape right now means familiarizing
yourself with the most common attacks
targeting LLMs.

In this section, we’ll explore the ten
techniques most commonly used against
LLMs according to OWASP (Open Worldwide
Application Security Project), who recently
launched this guide alongside their existing
body of open security research. Readers
should note that not all vulnerabilities may
be applicable to all use cases, and security
teams should consider both the relevance
and scope of each LLM vulnerability that
may affect their enterprise.

To expand upon impact, Elastic has
assessed 4 broad categories of users that
should consider their role in these security
protections. The users involved are:

•	 LLM Creators: Organizations who are
building, designing, hosting, and training
LLMs, such as OpenAI, Amazon Web
Services, or Google

•	 LLM Integrators: Organizations and
individuals who integrate existing LLM
technologies produced by LLM Creators
into other applications

•	 LLM Maintainers: Individuals who
monitor operational LLMs for
performance, reliability, security and
integrity use-cases, and remain directly
involved in the maintenance of the
codebase, infrastructure and software
architecture

•	 Security Users: People who are actively
looking for vulnerabilities in systems
through traditional testing mechanisms
and means. This may expand beyond the
traditional risks discussed in OWASP’s
LLM Top 10 into risks associated with the
software and infrastructure surrounding
these systems

Whether or not a user is impacted in a threat
technique is denoted by the following icons:

Impacted Users

Creator Maintainer

Integrator Security

8 | LLM Safety Assessment

LLM01 - Prompt injection
Prompt injection attacks involve manipulating the input prompts given to a language model
to influence or control the generated outputs. Generative AI models rely heavily on input
prompts to generate coherent and contextually relevant outputs. This type of attack leverages
the model's tendency to generate responses based on the information provided in the prompt.

Applications Mitigations

•	 Designing system prompts that contain
biased or misleading information

•	 Iteratively refining prompts to generate
results that align with the attacker’s
objectives

•	 Implementing mechanisms to validate and
sanitize input prompts

•	 Auditing the model behavior to identify
potential avenues for abuse

•	 Training models to identify and prevent
malicious inputs

Prompt injection example:

With more than 100M users and counting, Google Gemini is one of the most prevalent LLMs
and especially noteworthy as one of the few multimodal models capable of generating
images, video, text, and other media. In March of 2024, researchers identified prompt
injection and data leakage vulnerabilities within Google Gemini that a threat actor could
abuse.

Google Gemini responded to indirect prompts for its foundational instructions, exposing the
rules that researchers needed to adhere to or bend. It was susceptible to the suggestion that
it had sufficient agency to defy the rules, and researchers could also use a similar form of
suggestion to convince it to output misinformation.

An ethical system prompt allows for consistent responses, adheres to rules and instructions,
improves contextual understanding with reference materials and background information, and
reliably structures outputs.

9 | LLM Safety Assessment

LLM02 - Insecure output handling
Insecure output handling is the inability or failure of AI systems to appropriately manage
and mitigate the risks associated with the generated outputs. Generative AI systems can
produce natural language text based on the provided input prompts, but these outputs can be
insecure, inappropriate, or biased.

Applications Mitigations

•	 Failing to build filters that prevent harmful
output. Harmful output is any media that is
misleading or untrue, including:

•	 Cross site scripting (XSS)

•	 Cross site request forgery (CSRF)

•	 Server-side request forgery (SSRF)

•	 MITRE ATT&CK® Tactic TA0004:
Privilege Escalation

•	 Remote code execution (RCE)

•	 Cyber attack scenarios

•	 Applying proper input validation on
responses from the models to backend
functions

•	 Filtering processes to identify and remove
malicious outputs

•	 Training models to detect and prevent
insecure outputs

Insecure output handling example

The 2023 vulnerability in LangChain2 (up to version 0.0.131) illustrates threat actors exploiting
insecure output handling to execute code. Combined with prompt injection exploitation, this
resulted in adversary-controlled code being executed by Python’s exec() method.

2CVE-2023-29374 details from NIST’s National Vulnerability Database

10 | LLM Safety Assessment

LLM03 - Training data poisoning
Training data poisoning involves manipulating the data used to train generative models to
compromise them, weaken security, reduce effectiveness, or impact ethical behaviors.

Applications Mitigations

•	 Introducing misleading or malicious data,
such as biased or false information, into
the training dataset

•	 Validating and verifying the supply chain
and integrity of the training data

•	 Monitoring the model to identify deviations
from the expected output patterns

•	 Training the model to identify and prevent
adversarial inputs such as poisoned
training data

Training data poisoning example

A fascinating experiment published by four Cornell University students demonstrated that
with a relatively small sample size, attacking the model's training processes allowed the
researchers to manipulate model inputs and influence response outputs.

11 | LLM Safety Assessment

LLM04 - Model Denial of Service
Model Denial of Service (DoS) attacks involve sending multiple requests or inputs to a model
to degrade or disrupt its ability to provide output results. This attack works similarly to
traditional DoS attacks by overloading the computational resources that the model requires.

Applications Mitigations

•	 Sending many requests (input prompts,
queries, etc.) in a short period, resulting
in the model’s resources being consumed
to the point of being slow, unavailable, or
incurring exorbitant compute costs

•	 While inconvenient for normal users, this
attack can also disrupt AI-enabled services
that require the model to be available

•	 Rate-limiting requests

•	 Designing scalable and resilient systems

•	 Analyzing incoming requests to identify
malicious or anomalous behaviors

•	 Using traditional DoS countermeasures
such as load balancing and caching

Model DoS example

In November 2023, OpenAI confirmed that a DDoS targeting ChatGPT impacted user
access, and Anthropic’s Claude 2 also experienced “capacity constraints,” making the
chatbot inaccessible.

12 | LLM Safety Assessment

LLM05 - Supply chain vulnerability
Supply chain attacks involve inserting malicious or misleading information into model
development or deployment pipelines. The supply chain for models presents a large attack
surface from data collection, training, validation, and deployment.

Applications Mitigations

•	 Manipulating training data by introducing
malicious or manipulated data samples
(also known as toxicity)

•	 Modifying training hyperparameters,
optimization techniques, or algorithms to
introduce vulnerabilities into models

•	 Tampering with validation techniques and
evaluation criteria to hide vulnerabilities

•	 Implementing processes to validate the
authenticity and integrity of the training
data, validation criteria, and verification
processes to ensure the security of the
models during each supply chain phase

•	 Risk mitigation processes for vendors that
have access to sensitive data

Supply chain vulnerability example

In July 2023, Mithril Security, a confidential computing and AI-privacy research team,
disclosed an educational awareness publication called PoisonGPT. It showed how they
manipulated an LLM's supply chain to spread misinformation.

13 | LLM Safety Assessment

LLM06 - Sensitive information disclosure
Sensitive information disclosure attacks involve attackers performing the unauthorized
release of confidential or sensitive information. This can be through any type of content
generated by AI models.

Applications Mitigations

•	 Exploiting confidential information in
training datasets or input queries

•	 Crafting specific input prompts designed
to return proprietary and sensitive data in
the model

•	 Removing or anonymizing confidential
information from training datasets

•	 Validating queries to prevent malicious or
sensitive inputs

•	 Implementing post-processing techniques
to sanitize sensitive data

Sensitive information disclosure example

In February 2024, secure browser isolation startup Menalo Security reported that 55% of all
generative AI inputs included sensitive and personally identifiable information. These inputs
were available to train future models. This information being included in models can make
them susceptible to attackers attempting to exploit improperly sanitized input queries and
output responses to collect this sensitive information.

14 | LLM Safety Assessment

LLM07 - Insecure plugin design
AI plugins are software add-ons that allow AI systems to interact with third-party services.
Insecure plugin design attacks involve attackers exploiting extension or plugin vulnerabilities
to compromise the AI system. Similar to exploiting supply chain vulnerabilities, insecure
plugins can be used to attack an otherwise secure AI system.

Applications Mitigations

•	 Exploiting or creating vulnerabilities in
plugin software to gain unauthorized
access

•	 Executing additional malicious code,
escalating privileges, or impacting the AI
system's availability and integrity

•	 Performing code reviews and audits of
loaded plugins

•	 Validating that plugins are authentic before
loading them

•	 Using the method of least privilege for the
plugins' access to the system

Insecure plugin design example

An LLM plugin accepts a URL as a parameter and then instructs the LLM to connect to a
third-party service for information needed to answer a system or input query. An attacker
could replace this base URL with a domain they control and insert malicious content into the
response, which the LLM would then output to users.

15 | LLM Safety Assessment

LLM08 - Excessive agency
Excessive agency attacks involve attackers taking advantage of a plugin or AI system with too
much functionality, permission, or sovereignty. This can have a wide-ranging impact on the AI
system's operation.

Applications Mitigations

•	 Exploiting plugins with unneeded
functionality that allows for unintended
operations

•	 Example: a plugin that does not properly
sanitize input instructions. This plugin
can access a part of the backend
system that is optional to perform its
function or take advantage of the AI
system performing impactful operations
without confirmation from a human

•	 Ensuring that plugin functionality is limited
to the scope needed to accomplish the
plugin tasks

•	 Limiting plugin access to internal and
external systems to only do what is needed

•	 Tracking and monitoring plugin
authorizations to ensure they are within
scope

•	 Requiring a human-in-the-loop to verify
high-impact operations

Excessive agency example

An LLM bot can read the contents of a database using the database LLM plugin's READ
functionality; however, the plugin also has access to the WRITE and DELETE statements. A
specially crafted input query could exploit the plugin's excessive agency and manipulate the
database's contents.

16 | LLM Safety Assessment

LLM09 - Overreliance
Overreliance is more of a risk than an attack methodology. It refers to situations where a user
who submits input queries trusts the response output without scrutiny. The user's confidence
that the AI system is always right can lead to decisions based on inaccurate or incomplete
information provided by the AI system. Overreliance is most dangerous when combined with
hallucinations or confabulations, as the AI system creates unrealistic or misleading responses
and presents them as facts.

Applications Mitigations

•	 Attackers exploiting their knowledge of
their target's blind trust in AI responses
and using that knowledge to favorably
shape their target's decisions related to the
attacker's objectives

•	 Training users to employ scrutiny and
analysis of output responses from AI
systems

•	 Validating and verifying outputs with
experts and third-party data

•	 Incorporating a human-in-the-loop to
have oversight over high-impact output
responses

•	 Fostering an explainability and
transparency policy to provide insights into
the how the model generates responses

Overreliance example

An attacker may know that an AI system used by their target for incident response is prone
to hallucinations around a remote access implant. The attacker could use that weakness to
maintain persistence when their target believes they were completely evicted because of their
overreliance on the AI system.

17 | LLM Safety Assessment

LLM10 - Model theft
Model theft attacks involve attackers directly copying or extracting portions of proprietary
and trained AI models.

Applications Mitigations

•	 Leveraging unauthorized access to the
trained AI models or the infrastructure used
to train models

•	 Exfiltrating the model or proprietary
and intellectual property datasets like
parameters, architectures, and training
techniques

•	 Leveraging data-at-rest encryption
techniques

•	 Network segmentation to prevent direct
access to sensitive AI model components
or data

•	 Robust auditing, logging, and monitoring of
access to intellectual property

Model theft example

In March of 2024, researchers from Cornell University published a paper outlining how they
extracted the partial and, in some cases, the entire projection matrix from closed-source
proprietary language models. Projection matrices are mathematical tools that transform
data to influence response outputs or combine two different pre-trained LLMs to create new
models.

When the monumental cost of training a model is considered, this intellectual property theft
can accelerate research and development for competitors if they can steal a trained model
without investing the resources.

18 | LLM Safety Assessment

Conclusion
Generative AI and LLMs are not just emerging
technologies, they are incredibly powerful tools that
are already reshaping the technology landscape. These
advancements must be made securely and responsibly.
New technologies can come with a steep learning curve,
but our hope is that this publication has given you a better
understanding of the common LLM vulnerabilities, attacks
you might encounter, and the mitigation strategies to use
them securely.

These mitigation strategies cover various
countermeasures targeted at different areas of the
enterprise architecture, primarily in-product controls
that developers must adopt while building LLM-enabled
applications and information security measures that the
SOC must add to verify and validate the secure usage of
LLMs. For example, our own Elastic AI Assistant and other
AI-driven workflows in Elastic’s product suite employ
a robust set of such in-product controls. Furthermore,
Elastic Security has now introduced several coverage
rules for the SOC towards LLM security, specifically those
targeting data source abuses. We expect to expand this
coverage to additional LLM threat vectors in the near
future.

Elastic Security is not just about providing security
solutions, we are about democratizing the knowledge
and capabilities needed to endure the threat landscape.
We develop in the open and provide crucial insights
about emerging activities. Register for our webinar Fight
Smarter: Accelerate your SOC with AI to see exactly how
Elastic is changing the security landscape for the better.
You can get the latest on emerging threats by exploring
the Elastic Security Labs library or following us on X.

