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Introduction
The generative artificial intelligence (AI) 
debate has engrossed the software industry 
and beyond ever since ChatGPT’s reveal in 
late 2022. For a year and a half, companies 
and individuals have rushed to share 
their thoughts on disruptive generative AI 
technologies, often glossing over specific 
merits and risks. 

The lack of clarity around these emerging 
technologies has left many organizations 
concerned and overwhelmed, with some 
companies denying usage entirely. Others 
have permitted it to stay innovative, either 
allowing for restricted use or brushing off 
security concerns entirely. Regardless of 
the stance taken, generative AI isn’t going 
away, but it must be implemented and 
utilized safely. In order for this to happen, 
security teams must understand how these 
technologies can be abused. 

With emerging technologies, companies 
often believe that they must keep their 
discoveries to themselves to gain an 
advantage against competitors. But 
obfuscating advancements does not 
maintain security, especially when the 
boundaries are being pushed daily. 
Developers must be willing to democratize 
the knowledge gained through the trial and 
error of emerging technologies, especially 
when this knowledge can impact the threat 
landscape. 

While generative AI’s applications are 
growing by the day, the most prevalent 
example — the large language model (LLM) 
— has exploded in popularity for its ability to 
generate text-based insights, suggestions, 
conversions, and more. This report will 
discuss exactly how LLMs can be abused, 
explore the ten most common vulnerabilities, 
and highlight some of the mitigations 
available today to keep LLMs safe. 
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Securing against LLM abuses
What is an LLM?
LLMs begin with generative AI, which 
describes systems capable of creating 
text, code, audio, and video based on user 
queries or prompts. Large language models 
are the neural network language models 
underlying generative AI. While LLMs can 
be traced back to 2017 with Attention is All 
You Need (Vaswani et al.), the adoption of 
the technology exploded with the release 
of OpenAI’s chatbot ChatGPT. The human-
like linguistic capabilities, particularly the 
ability to converse directly with AI models 
that can produce high-quality text, made it 
the fastest-growing consumer application 
in history. 

While the underlying techniques powering 
these chatbots are not new, the landscape 
shift came when OpenAI’s launch of GPT-3.5 
provided a consumer-friendly conversational 
interface that made the technology widely 
accessible. For the first time, the cutting-
edge technology was no longer exclusive 
to the world’s top AI research labs and 
practitioners with access to specialized 
hardware resources and millions in budget. 

Today, the latest advancements in foundation 
models — general-purpose models trained 
on broad datasets that can be further 
modified or fine-tuned for more specific 
tasks — are offered via fully managed APIs. 
The highly specialized and cost-intensive 
process of designing and deploying a neural 
network architecture from scratch has been 
replaced by managed services and UIs 
offering pre-trained models that perform 
well on general tasks off the shelf. The 
latest foundation models include proprietary 
offerings from OpenAI (GPT-4), Anthropic 
(Claude 3), Google (Gemini, PaLM), and 
Amazon (Titan), alongside open-source 
models from Facebook (LLaMA) and Mistral 
(Mixtral 8x-7B).

Even more impressive is the explosion of 
the open-source ecosystem for integrating 
generative AI into traditional software 
applications. Every major public cloud 
provider now allows developers access to 
their own proprietary base models as well 
as a wide range of open-source models 
and managed services for ingesting 
organizational and domain data.
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Risks with LLM 
implementations
LLMs' rapid embrace and continued 
innovation has resulted in a rush to embed 
the technology into business applications, 
providing more opportunities than ever 
for adversaries to take advantage of their 
vulnerabilities. In particular, hallucinations, 
data leakage, and toxicity are well-known 
limitations of LLM implementations that must 
be monitored and mitigated. 

Hallucinations encompass irrelevant or 
factually inaccurate information provided as 
a response when the model is unsure how 
to answer. They are usually due to various 
aspects of the development process, training 
data biases or quality, training objectives, 
or a combination of all these elements. 
Hallucinations can result from mistakes in the 
model (as listed previously) or be triggered 
by prompt injection methods in which a user 
queries a model in a way designed to subvert 
its intended usage. This means that model 
output can be well-written, plausible, and 
completely made up.

Data leakage can occur in both the prompt 
and the response. In the former, a user 
shares private or confidential information 
with the model; while in the latter, the 
LLM’s response contains PII or proprietary 
information memorized by the model during 
the training process. Specifically, LLMs 
are trained on massive quantities of text 
data, much of it acquired directly from the 
Internet. A consequence of this approach 

is that personal information may be directly 
embedded into the training dataset. 

The ability to enhance and adapt pre-
trained models to downstream applications 
— providing additional domain and task-
specific data to a pre-trained model, either 
through fine-tuning (directly updating 
the parameters of pre-trained models 
using a specific dataset) or with  retrieval-
augmented generation (RAG) — is a 
common practice. Effectively, this means 
that intellectual property and sensitive 
organizational information may also be 
stored within fine-tuned models. 

While fine-tuning is often necessary 
to use LLMs in specialized domains, 
foundation models can also be fine-tuned 
to circumvent the safeguards originally 
architected into the pre-trained LLMs via 
alignment tasks — offering an avenue for 
an attacker to extract private information. 
For example, researchers demonstrated 
that they could bypass OpenAI’s controls 
on answering privacy-based queries to 
extract additional PII by fine-tuning GPT-3.5 
on only ten PII samples.¹

With our implementation, 
your data is stored in 
Elastic. We query it and 
then provide relevant 
results as context to an LLM 
via context window.

¹The Janus Interface: How Fine-Tuning in Large Language Models Amplifies the Privacy Risks, by Xiaoyi Chen, Siyuan 
Tang, Rui Zhu, Shijun Yan, Lei Jin, Zihao Wang, Liya Su, XiaoFeng Wang, Haixu Tang, used under a CC BY 4.0 DEED license, 
available at https://arxiv.org/abs/2310.15469
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While related to data leakage, toxicity refers 
to both explicit outputs such as abusive 
language and profanities and implicit outputs 
like harmful words or concepts about people. 
Classification models, often called toxicity 
classifiers, have been successfully employed 
to detect explicit toxicity; however, the level 
of nuance required to detect implicit toxicity 
has posed a greater challenge. Advanced 
linguistic abilities like metaphors, sarcasm, 
and circumlocution are typically employed in 
these LLM responses. A well-known toxicity 
incident is the launch of Tay after X users 
tweeted inflammatory content at the chatbot 
and they were later incorporated into the 
model in a continuous training process. 

While it’s important for organizations to be 
aware of the limitations that LLMs have, 
there are a series of development practices 
and security methods that can reinforce 
the technology.

Responsible LLM 
development
A first step towards compliant, secure, 
and safe LLM usage is understanding and 
prioritizing the risks associated with each 
AI deployment. Risk to the business can be 
actively mitigated with awareness of and 
adoption of best practices alongside the new 
protections and methods employed by AI 
developers and security teams.

One technique model maintainers should 
leverage to build strong and secure LLMs is 
known as a generative adversarial network 
(GAN). In a GAN scenario, two neural 
networks compete in a zero-sum game. 
The networks each attempt to create an 
advantage for their respective network by 
creating a disadvantage for their opponents. 
For example, one network could operate to 
gain access to a protected system, place an 
implant, maintain persistence, and exfiltrate 
data. While this occurs, the other network 
tries to detect the adversary's actions and 
deploy countermeasures to contain and/or 
evict them. GAN training is a way to identify 
weaknesses and release enhancements to 
your AI system.

Employing GANs in adversarial attacks as a 
part of AI red teaming is great for exploring 
the limitations of LLM-based applications. 
But organizations can prepare even more 
by understanding the potential risks to their 
business and protecting against the most 
common attack technique.

Leveraging a mechanism to 
“bring your own model” is an 
effective mitigating action 
for LLM attacks. Elastic 
has built this capability 
into its generative AI 
Assistant, enabling users to 
deploy LLMs that meet strict 
security standards.
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Common LLM threat techniques
LLMs represent a significant change to 
the enterprise attack surface, one that is 
likely to have far-reaching consequences 
for the ways we perceive risk. It’s already 
happening, and preparing for the threat 
landscape right now means familiarizing 
yourself with the most common attacks 
targeting LLMs.

In this section, we’ll explore the ten 
techniques most commonly used against 
LLMs according to OWASP (Open Worldwide 
Application Security Project), who recently 
launched this guide alongside their existing 
body of open security research. Readers 
should note that not all vulnerabilities may 
be applicable to all use cases, and security 
teams should consider both the relevance 
and scope of each LLM vulnerability that 
may affect their enterprise.

To expand upon impact, Elastic has 
assessed 4 broad categories of users that 
should consider their role in these security 
protections. The users involved are:

•	 LLM Creators: Organizations who are 
building, designing, hosting, and training 
LLMs, such as OpenAI, Amazon Web 
Services, or Google

•	 LLM Integrators: Organizations and 
individuals who integrate existing LLM 
technologies produced by LLM Creators 
into other applications

•	 LLM Maintainers: Individuals who 
monitor operational LLMs for 
performance, reliability, security and 
integrity use-cases, and remain directly 
involved in the maintenance of the 
codebase, infrastructure and software 
architecture

•	 Security Users: People who are actively 
looking for vulnerabilities in systems 
through traditional testing mechanisms 
and means. This may expand beyond the 
traditional risks discussed in OWASP’s 
LLM Top 10 into risks associated with the 
software and infrastructure surrounding 
these systems

Whether or not a user is impacted in a threat 
technique is denoted by the following icons:

Impacted Users

Creator Maintainer

Integrator Security
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LLM01 - Prompt injection
Prompt injection attacks involve manipulating the input prompts given to a language model 
to influence or control the generated outputs. Generative AI models rely heavily on input 
prompts to generate coherent and contextually relevant outputs. This type of attack leverages 
the model's tendency to generate responses based on the information provided in the prompt. 

Applications Mitigations

•	 Designing system prompts that contain 
biased or misleading information

•	 Iteratively refining prompts to generate 
results that align with the attacker’s 
objectives

•	 Implementing mechanisms to validate and 
sanitize input prompts

•	 Auditing the model behavior to identify 
potential avenues for abuse 

•	 Training models to identify and prevent 
malicious inputs

Prompt injection example:

With more than 100M users and counting, Google Gemini is one of the most prevalent LLMs 
and especially noteworthy as one of the few multimodal models capable of generating 
images, video, text, and other media. In March of 2024, researchers identified prompt 
injection and data leakage vulnerabilities within Google Gemini that a threat actor could 
abuse.

Google Gemini responded to indirect prompts for its foundational instructions, exposing the 
rules that researchers needed to adhere to or bend. It was susceptible to the suggestion that 
it had sufficient agency to defy the rules, and researchers could also use a similar form of 
suggestion to convince it to output misinformation.

An ethical system prompt allows for consistent responses, adheres to rules and instructions, 
improves contextual understanding with reference materials and background information, and 
reliably structures outputs.
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LLM02 - Insecure output handling
Insecure output handling is the inability or failure of AI systems to appropriately manage 
and mitigate the risks associated with the generated outputs. Generative AI systems can 
produce natural language text based on the provided input prompts, but these outputs can be 
insecure, inappropriate, or biased. 

Applications Mitigations

•	 Failing to build filters that prevent harmful 
output. Harmful output is any media that is 
misleading or untrue, including:

•	 Cross site scripting (XSS)

•	 Cross site request forgery (CSRF) 

•	 Server-side request forgery (SSRF) 

•	 MITRE ATT&CK® Tactic TA0004: 
Privilege Escalation 

•	 Remote code execution (RCE) 

•	 Cyber attack scenarios

•	 Applying proper input validation on 
responses from the models to backend 
functions 

•	 Filtering processes to identify and remove 
malicious outputs

•	 Training models to detect and prevent 
insecure outputs

Insecure output handling example 

The 2023 vulnerability in LangChain2 (up to version 0.0.131) illustrates threat actors exploiting 
insecure output handling to execute code. Combined with prompt injection exploitation, this 
resulted in adversary-controlled code being executed by Python’s exec() method.

2CVE-2023-29374 details from NIST’s National Vulnerability Database 
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LLM03 - Training data poisoning
Training data poisoning involves manipulating the data used to train generative models to 
compromise them, weaken security, reduce effectiveness, or impact ethical behaviors.

Applications Mitigations

•	 Introducing misleading or malicious data, 
such as biased or false information, into 
the training dataset

•	 Validating and verifying the supply chain 
and integrity of the training data

•	 Monitoring the model to identify deviations 
from the expected output patterns

•	 Training the model to identify and prevent 
adversarial inputs such as poisoned 
training data

Training data poisoning example

A fascinating experiment published by four Cornell University students demonstrated that 
with a relatively small sample size, attacking the model's training processes allowed the 
researchers to manipulate model inputs and influence response outputs.
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LLM04 - Model Denial of Service
Model Denial of Service (DoS) attacks involve sending multiple requests or inputs to a model 
to degrade or disrupt its ability to provide output results. This attack works similarly to 
traditional DoS attacks by overloading the computational resources that the model requires. 

Applications Mitigations

•	 Sending many requests (input prompts, 
queries, etc.) in a short period, resulting 
in the model’s resources being consumed 
to the point of being slow, unavailable, or 
incurring exorbitant compute costs

•	 While inconvenient for normal users, this 
attack can also disrupt AI-enabled services 
that require the model to be available 

•	 Rate-limiting requests

•	 Designing scalable and resilient systems

•	 Analyzing incoming requests to identify 
malicious or anomalous behaviors

•	 Using traditional DoS countermeasures 
such as load balancing and caching

Model DoS example

In November 2023, OpenAI confirmed that a DDoS targeting ChatGPT impacted user 
access, and Anthropic’s Claude 2 also experienced “capacity constraints,” making the 
chatbot inaccessible. 
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LLM05 - Supply chain vulnerability
Supply chain attacks involve inserting malicious or misleading information into model 
development or deployment pipelines. The supply chain for models presents a large attack 
surface from data collection, training, validation, and deployment.

Applications Mitigations

•	 Manipulating training data by introducing 
malicious or manipulated data samples 
(also known as toxicity)

•	 Modifying training hyperparameters, 
optimization techniques, or algorithms to 
introduce vulnerabilities into models

•	 Tampering with validation techniques and 
evaluation criteria to hide vulnerabilities

•	 Implementing processes to validate the 
authenticity and integrity of the training 
data, validation criteria, and verification 
processes to ensure the security of the 
models during each supply chain phase 

•	 Risk mitigation processes for vendors that 
have access to sensitive data

Supply chain vulnerability example 

In July 2023, Mithril Security, a confidential computing and AI-privacy research team, 
disclosed an educational awareness publication called PoisonGPT. It showed how they 
manipulated an LLM's supply chain to spread misinformation.
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LLM06 - Sensitive information disclosure
Sensitive information disclosure attacks involve attackers performing the unauthorized 
release of confidential or sensitive information. This can be through any type of content 
generated by AI models. 

Applications Mitigations

•	 Exploiting confidential information in 
training datasets or input queries

•	 Crafting specific input prompts designed 
to return proprietary and sensitive data in 
the model

•	 Removing or anonymizing confidential 
information from training datasets

•	 Validating queries to prevent malicious or 
sensitive inputs

•	 Implementing post-processing techniques 
to sanitize sensitive data

Sensitive information disclosure example

In February 2024, secure browser isolation startup Menalo Security reported that 55% of all 
generative AI inputs included sensitive and personally identifiable information. These inputs 
were available to train future models. This information being included in models can make 
them susceptible to attackers attempting to exploit improperly sanitized input queries and 
output responses to collect this sensitive information.
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LLM07 - Insecure plugin design
AI plugins are software add-ons that allow AI systems to interact with third-party services. 
Insecure plugin design attacks involve attackers exploiting extension or plugin vulnerabilities 
to compromise the AI system. Similar to exploiting supply chain vulnerabilities, insecure 
plugins can be used to attack an otherwise secure AI system.

Applications Mitigations

•	 Exploiting or creating vulnerabilities in 
plugin software to gain unauthorized 
access

•	 Executing additional malicious code, 
escalating privileges, or impacting the AI 
system's availability and integrity

•	 Performing code reviews and audits of 
loaded plugins

•	 Validating that plugins are authentic before 
loading them

•	 Using the method of least privilege for the 
plugins' access to the system

Insecure plugin design example

An LLM plugin accepts a URL as a parameter and then instructs the LLM to connect to a 
third-party service for information needed to answer a system or input query. An attacker 
could replace this base URL with a domain they control and insert malicious content into the 
response, which the LLM would then output to users.
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LLM08 - Excessive agency
Excessive agency attacks involve attackers taking advantage of a plugin or AI system with too 
much functionality, permission, or sovereignty. This can have a wide-ranging impact on the AI 
system's operation.

Applications Mitigations

•	 Exploiting plugins with unneeded 
functionality that allows for unintended 
operations 

•	 Example: a plugin that does not properly 
sanitize input instructions. This plugin 
can access a part of the backend 
system that is optional to perform its 
function or take advantage of the AI 
system performing impactful operations 
without confirmation from a human

•	 Ensuring that plugin functionality is limited 
to the scope needed to accomplish the 
plugin tasks

•	 Limiting plugin access to internal and 
external systems to only do what is needed

•	 Tracking and monitoring plugin 
authorizations to ensure they are within 
scope

•	 Requiring a human-in-the-loop to verify 
high-impact operations 

Excessive agency example

An LLM bot can read the contents of a database using the database LLM plugin's READ 
functionality; however, the plugin also has access to the WRITE and DELETE statements. A 
specially crafted input query could exploit the plugin's excessive agency and manipulate the 
database's contents.
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LLM09 - Overreliance
Overreliance is more of a risk than an attack methodology. It refers to situations where a user 
who submits input queries trusts the response output without scrutiny. The user's confidence 
that the AI system is always right can lead to decisions based on inaccurate or incomplete 
information provided by the AI system. Overreliance is most dangerous when combined with 
hallucinations or confabulations, as the AI system creates unrealistic or misleading responses 
and presents them as facts.

Applications Mitigations

•	 Attackers exploiting their knowledge of 
their target's blind trust in AI responses 
and using that knowledge to favorably 
shape their target's decisions related to the 
attacker's objectives 

•	 Training users to employ scrutiny and 
analysis of output responses from AI 
systems

•	 Validating and verifying outputs with 
experts and third-party data 

•	 Incorporating a human-in-the-loop to 
have oversight over high-impact output 
responses

•	 Fostering an explainability and 
transparency policy to provide insights into 
the how the model generates responses

Overreliance example

An attacker may know that an AI system used by their target for incident response is prone 
to hallucinations around a remote access implant. The attacker could use that weakness to 
maintain persistence when their target believes they were completely evicted because of their 
overreliance on the AI system.
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LLM10 - Model theft
Model theft attacks involve attackers directly copying or extracting portions of proprietary 
and trained AI models.

Applications Mitigations

•	 Leveraging unauthorized access to the 
trained AI models or the infrastructure used 
to train models 

•	 Exfiltrating the model or proprietary 
and intellectual property datasets like 
parameters, architectures, and training 
techniques

•	 Leveraging data-at-rest encryption 
techniques

•	 Network segmentation to prevent direct 
access to sensitive AI model components 
or data

•	 Robust auditing, logging, and monitoring of 
access to intellectual property

Model theft example

In March of 2024, researchers from Cornell University published a paper outlining how they 
extracted the partial and, in some cases, the entire projection matrix from closed-source 
proprietary language models. Projection matrices are mathematical tools that transform 
data to influence response outputs or combine two different pre-trained LLMs to create new 
models. 

When the monumental cost of training a model is considered, this intellectual property theft 
can accelerate research and development for competitors if they can steal a trained model 
without investing the resources.
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Conclusion
Generative AI and LLMs are not just emerging 
technologies, they are incredibly powerful tools that 
are already reshaping the technology landscape. These 
advancements must be made securely and responsibly. 
New technologies can come with a steep learning curve, 
but our hope is that this publication has given you a better 
understanding of the common LLM vulnerabilities, attacks 
you might encounter, and the mitigation strategies to use 
them securely. 

These mitigation strategies cover various 
countermeasures targeted at different areas of the 
enterprise architecture, primarily in-product controls 
that developers must adopt while building LLM-enabled 
applications and information security measures that the 
SOC must add to verify and validate the secure usage of 
LLMs. For example, our own Elastic AI Assistant and other 
AI-driven workflows in Elastic’s product suite employ 
a robust set of such in-product controls. Furthermore, 
Elastic Security has now introduced several coverage 
rules for the SOC towards LLM security, specifically those 
targeting data source abuses. We expect to expand this 
coverage to additional LLM threat vectors in the near 
future. 

Elastic Security is not just about providing security 
solutions, we are about democratizing the knowledge 
and capabilities needed to endure the threat landscape. 
We develop in the open and provide crucial insights 
about emerging activities. Register for our webinar Fight 
Smarter: Accelerate your SOC with AI to see exactly how 
Elastic is changing the security landscape for the better. 
You can get the latest on emerging threats by exploring 
the Elastic Security Labs library or following us on X.


