
WHITE PAPER

Introduction
Web browsers are among the most important applications in our business

lives, yet they are also the most vulnerable to attack. The simple act of

loading a malicious web page suffices to compromise the user’s endpoint,

leading to malware installation, data theft, and penetration of corporate

networks. Unfortunately, an ever-increasing set of browser features

ensures that attackers will continue to have an unlimited supply of

vulnerabilities to exploit.

A critical ingredient in today’s browser exploits is active content. In the

modern web, active content comes in two predominant forms: Flash and

JavaScript. Regardless of form, active content executes in the context of

the user’s browser and enables significant attacker control and visibility

into the browser’s workings and vulnerabilities. For instance, active

content enables the attacker to discern memory locations (address space

disclosure), influence data layout (heap spray), and dictate code generation

(JIT spray)—all of which are key techniques in crafting a successful exploit.

Modern endpoints have built-in defenses against simple browser exploits,

but active content execution enables determined adversaries to bypass

these defenses with sophisticated, multi-stage attacks. In particular, two

pervasive defenses—Data Execution Prevention (DEP/NX) and Address

Space Layout Randomization (ASLR)—thwart simple code injection and

Return-Oriented Programming (ROP) exploits, respectively. However,

with the aid of active content, an exploit can bypass both DEP and ASLR,

typically by triggering a secondary vulnerability—one that, for instance,

reveals the memory location of native code. The exploit can then use that

code to craft ROP code sequences that execute the attacker’s bidding.

Browser Isolation Is the Future
Browser isolation is an emerging technology that offers a solution to the

security challenge posed by executing active content on the endpoint.

It centers around the notion of an isolated browser—a web browser

that loads and runs pages, including all embedded active content,

inside a contained environment with the goal of isolating any potential

browser infection away from the endpoint. In most incarnations, the

Menlo Security
Isolation Platform
Adaptive Clientless Rendering

Browser isolation

promises to safeguard

users from future

zero-day threats

by running active

content away from the

endpoint.

WHITE PAPER

02 | www.menlosecurity.com

isolated browser and the endpoint are separated by a secure channel using

a minimal, highly restrictive protocol designed to carry rendering updates to

the endpoint and user input to the isolated browser, and nothing else. This

“air-gapped” browsing mode enables browser isolation to defend against

today’s sophisticated zero-day exploits. Specifically, by running untrusted

active content on the isolated browser and preventing it from probing and

exfiltrating data from the endpoint, browser isolation precludes exploitation of

secondary vulnerabilities essential to bypassing standard endpoint defenses.

The Browser Isolation Challenge:
Making It Practical
Despite its compelling security benefits, browser isolation must meet IT and

end-user needs if it is to become a widely adopted security technology. To that

end, we have identified two key requirements for a practical browser isolation

solution.

The first requirement, clientless deployment, reduces IT burden by

altogether avoiding the need for endpoint software installs, and with it, the

risk of destabilizing the endpoint. The clientless nature also enables easy

enterprisewide deployment via in-network proxy configuration, as well as fully

centralized management of browsing policies and security updates across all

devices—including personal devices—within the enterprise network.

Equally important, a native user experience, in which users do not perceive

a difference from a native experience, is critical for ensuring end-user

productivity and buy-in. In particular, users should not have to alter the way

they browse the web or be distracted by changes to their browser’s behavior.

Moreover, rendering speed and quality should be identical to native for a

broad range of media types (text and video), and day-to-day operations such

as printing and copy-paste should just work.

Meeting both requirements means solving the challenging problem of

transparently remoting the isolated browser’s rendered output to the existing

endpoint browser without requiring additional endpoint modifications (no

agents or special plug-ins). Unfortunately, the traditional and most prevalent

remoting technique—pixel mirroring—falls short, mainly because it treats the

isolated web page as a bag of pixels to be mirrored with a client that has little

understanding of what those pixels represent. The result is a one-size-fits-all

approach that not only precludes adapting the remoting technique to the kind

of content being displayed (text vs. video), but also slows down page load time

and responsiveness by eliminating opportunities to harness the browser’s

hardware-accelerated rendering features, and hinders everyday workflow

operations such as printing and copy-paste.

25%

Through 2022:
25% of organizations will
adopt browser isolation.
—Gartner 2018 SWG
Magic Quadrant

WHITE PAPER

www.menlosecurity.com | 03

Recognizing the challenges posed by pixel-mirroring technology, several

browser isolation solutions have traded off the clientless form factor for

specialized endpoint browsers, plug-ins, and virtualization. While these trade-

offs are acceptable in some environments, the resulting IT burden caused by

trouble tickets and endpoint disruption has proved to be a significant barrier

to broader deployment.

Adaptive Clientless Rendering
Menlo Security’s patented Adaptive Clientless Rendering™ (ACR) is the core

technology used in the Menlo Security Isolation Platform (MSIP). In a clear

departure from traditional pixel-remoting technology, ACR combines a web-

based delivery vehicle with a greater understanding of the isolated page to

simultaneously enable clientless deployment and a native user experience.

Depicted in Figure 1, the ACR architecture involves two major components:

the Safe Page and the isolated browser.

The Safe Page is a safe, transcoded version of the target web page that is loaded

by the existing endpoint browser in lieu of the original page. Served via a secure

web proxy, the Safe Page establishes an SSL-encrypted communication channel

to a freshly allocated isolated browser upon loading, and then applies rendering

updates coming from the isolated browser and relays user inputs back to it.

The Safe Page capitalizes on rapidly converging web standards and advances

in browser engines to work accurately and efficiently regardless of which major

browser or device is used on the endpoint.

Clientless Architecture

UNSAFE PAGE
in Isolated Browser

SAFE PAGE
in Endpoint

Browser
Input Eventsnationalnews

.com

Figure 1: The ACR clientless architecture. The existing endpoint browser loads a safe, transcoded version of the
original page (Safe Page) that interprets rendering updates coming from the isolated browser and relays input
events back to it—all over a secure HTTPS channel.

Isolation
Platform

Input Events

Unsafe HTML,
JavaScript, Flash

Rendering Updates
(Proprietary Encoding)

HTTP Requests

WHITE PAPER

04 | www.menlosecurity.com

Figure 2: Isolated browser architecture. DOM Mirroring in operation on a sample web page.

<body> <body>

<video>
(mp4)

Rendered
Output

DOM
Tree

Isolated BrowserEndpoint Browser

<object><script>

(mp4) (Flash)

Running on the MSIP, the isolated browser loads web pages on the endpoint’s

behalf. It sends rendering updates to the Safe Page in response to dynamic

page changes and injects user inputs coming from the Safe Page. Based on

an up-to-date version of the Chromium browser engine, the isolated browser

inherits its security, stability, and feature set. However, since no browser

engine is immune to infection, the MSIP operates under the assumption that

its isolated browsers will eventually be infected as well. Thus, as a key step

in securing the isolation platform as well as end users, the MSIP employs

frequent disposal of isolated browsers along with multi-level container

isolation to avoid both persistent and lateral infection.

Transparent Remoting Technology
The key to ACR’s transparent user experience is a patented remoting technique

we term Document Object Model (DOM) Mirroring. The DOM is the dynamic,

browser-internal representation of the user-visible rendered result. Intuitively,

the goal of DOM Mirroring is to mirror only the benign portions of the isolated

browser’s DOM tree on the endpoint browser.

To reflect DOM changes on the client, each isolated browser tab actively

monitors the currently loaded page’s DOM tree for changes, packages these

changes into DOM commands sans active content, and sends them to the Safe

Page for application. Once received, the Safe Page applies these updates to its

local DOM using the standard DOM API available in all browsers.

WHITE PAPER

www.menlosecurity.com | 05

Adaptive Transcoding
DOM Mirroring confers distinct advantages over pixel-mirroring

approaches, primarily owing to the selective exposure of DOM elements

to the client. A key benefit is that it enables the selection of remoting

strategy at DOM element granularity, whereby nonactive safe elements

are left as is and active unsafe elements are either dropped altogether

or are replaced with a safe, transcoded variant that is best suited for the

element’s media type.

For instance, ACR always drops <script> elements but transcodes CSS to

a layout-preserving form, free of active content. Of special importance

is Flash content, which often takes the form of video but can include

interactive elements as well (e.g., video player UI). In order to preserve

the native user experience, ACR dynamically detects the level of user

interaction and adapts its Flash transcoding method accordingly: Low-

interactive, high-frame -rate video content is transcoded into a high-

definition video that is streamed to the client while highly interactive Flash

elements are remoted in real time for optimal responsiveness.

Rendering and Workflow Offloading
Central to providing a truly transparent user experience, DOM Mirroring

enables CSS reflow, render-tree computation, and graphics compositing

to be performed on the endpoint browser as it would be natively,

resulting in visible benefits such as fast page loads, smooth scrolling and

animations, and crisp, high-quality HTML5 video playback. DOM Mirroring’s

semantically aware rendering also enables the client browser to apply

natively available fonts and UI widgets to the final rendered result for a

truly native look and feel, regardless of endpoint browser or platform. A

pixel-based approach, by contrast, is limited to the fonts and UI widgets on

the isolated browser.

Finally, DOM Mirroring avoids disruption to workflow operations such

as copy-paste, find-replace, and printing. Copy-paste, for example, is

difficult to emulate in a truly native fashion using pixel mirroring because

of browser-enforced security restrictions on asynchronous clipboard

manipulation. Printing, too, is encumbered by the endpoint browser’s view

of the page as a block of pixels, as opposed to a document that can be

reflowed to accommodate any output device. In contrast, DOM Mirroring

provides the endpoint browser’s existing workflow mechanisms with all the

information it needs to do its job, so emulation is not needed.

DOM Mirroring’s
semantically aware
rendering also enables
the client browser to
apply natively available
fonts and UI widgets to
the final rendered result
for a truly native look
and feel, regardless of
endpoint browser or
platform.

WHITE PAPER

06 | www.menlosecurity.com

Security
DOM Mirroring enables a native user experience by exposing a web page’s

semantic structure (the DOM) to the endpoint browser. However, to ensure

that this additional exposure does not sacrifice security for user experience,

ACR employs two security mechanisms that, in conjunction, offer a strong

defense against even the most determined adversaries. These mechanisms

are motivated by the following guiding security principle: Active content

execution is the key to successful evasion of endpoint defenses; without it, an

exploit has little hope of bypassing existing defenses, regardless of what else

an infected isolated browser sends down to the client.

The first mechanism, active content blocking and transcoding, leverages

the fact that active content entry points in the DOM are well defined to filter

all incoming DOM elements, attributes, and CSS against a whitelist at both

the Safe Page and the isolated browser. For instance, <script> elements and

onclick attributes are dropped, while <object> elements are replaced with a

safe remoting widget that displays the transcoded, real-time output of the

plug-in window as rendered on the isolated browser. As an added layer of

protection, the Safe Page also employs Content Security Policy at its strictest

setting (no inline script, no plug-in) to ensure that the endpoint browser blocks

all active content executions.

A second security mechanism, protocol checking and enforcement, ensures

that the Safe Page is not fooled into executing active content by malformed

updates coming from an infected isolated browser, and that it does not

inadvertently leak exploit-aiding information to an infected isolated browser.

In particular, all DOM updates coming from the isolated browser are expected

to be in a canonical format. For example, DIV elements must have the “div” tag.

The Safe Page does not accept any other string variant, even those including

strange character codes that may be interpreted unexpectedly by the endpoint

browser. Secondarily, the Safe Page verifies that outgoing messages adhere to

a simple user-input protocol: e.g., “click button 1”, “keypress code 45”, or “scroll

to 45”. This leaves an infected isolated browser without a channel to probe the

endpoint for vulnerabilities or to exfiltrate information useful for bypassing

standard endpoint defenses.

Applicability to Document Isolation
Like web browsers, document applications such as Microsoft Office and PDF

viewers are also susceptible to malicious content downloaded off the web

or sent via email attachments. Here, too, active content embedded within a

malicious document plays an enabling role in exploiting the host application’s

vulnerabilities. It is no surprise that the core techniques behind ACR apply

Active content execution
is the key to successful
evasion of endpoint
defenses; without it, an
exploit has little hope
of bypassing existing
defenses, regardless of
what else an infected
isolated browser sends
down to the client.

About Menlo
Security
Menlo Security protects
organizations from cyberattacks by
seeking to eliminate the threat of
malware from the web, documents,
and email. Our cloud-based
Isolation Platform scales to provide
comprehensive protection across
enterprises of any size, without
requiring endpoint software or
impacting the end-user experience.
Menlo Security is trusted by major
global businesses, including
Fortune 500 companies and
financial services institutions.

© 2019 Menlo Security,
All Rights Reserved.

Contact us
menlosecurity.com
(650) 614-1705
ask@menlosecurity.com

WHITE PAPER

equally well to the problem of isolating documents. In particular, upon

downloading a malicious document through the browser, MSIP uses ACR to

transcode the document into a layout-preserving HTML5 page and then loads

the transcoded content into the isolated browser. DOM Mirroring mechanisms

then ensure safe, clientless, and transparent mirroring of the document to the

endpoint.

Conclusion
The browser feature set continues to expand with new JavaScript-accessible

HTML5 APIs slowly supplanting Flash. Going forward, we can anticipate novel

exploits against this newly exposed attack surface, with active content firmly

remaining the predominant vector for exploitation. Browser isolation promises

to shield users from these future threats by running active content away from

the endpoint. However, to reach its true potential, browser isolation faces the

challenge of providing both clientless deployment and a fully transparent user

experience. Adaptive Clientless Rendering—the novel remoting technology

at the core of the Menlo Security Isolation Platform—meets this challenge by

selectively mirroring DOM elements to the existing endpoint browser.

With mechanisms to ensure that active content never executes on the

endpoint browser, ACR defends against zero-day threats while providing a

clientless and native browsing experience.

To learn more, visit menlosecurity.com/resources or get in touch via

ask@menlosecurity.com to see how you can use isolation to stop email and

web-based attacks.

https://www.menlosecurity.com/
mailto:ask%40menlosecurity.com?subject=
https://www.facebook.com/Menlo-Security-411677528985544/
https://twitter.com/menlosecurity
https://www.linkedin.com/company/menlo-security/
https://www.youtube.com/channel/UCN0AikN5dKnhEhmtQddAYqg
https://www.menlosecurity.com/resources-all
mailto:ask%40menlosecurity.com?subject=

