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Abstract

Disinformation, misinformation, and other `fake news'�collectively false information�
is quick and inexpensive to create and distribute in our increasingly digital and con-
nected world. Identifying false information early and cost e�ectively can o�set some of
those operational advantages. In this paper, we develop light-weight machine learning
models that utilize (1) a novel data set tracking browsing behavior and (2) domain reg-
istration data that is available for all websites when they are established. Using only
the domain registration data, we develop and demonstrate a machine learning classi�er
that identi�es domains, at the time the domain is registered, that will go on to produce
false information. We then combine this data with our browsing data and develop a
machine learning classi�er that identi�es false information domains whose content is
most associated with higher levels of consumption. Finally, we use our data to identify
false information domains that will cease operations after an event of interest, in our
case the 2016 U.S. presidential election. We theorize that the last category involves
actors seeking primarily to manipulate perceptions and outcomes of that event.

1 Introduction

The online proliferation of disinformation, misinformation, and other `fake news'�collectively

false information�has become an increasingly common characteristic of the digital infor-

mation environment Bradshaw and Howard (2019). Recent false information campaigns

have targeted areas that are salient to management and operations in both the private

and public sectors. Some false information campaigns target companies. For example, the

United States Department of Homeland Security identi�ed a false information campaign

in 2018 in which �right wing actors . . . sought to discredit and undermine Nike's brand
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reputation� and �do economic harm to a corporation with whom they disagreed� (U.S. De-

partment of Homeland Security, 2019). In 2020, Facebook accused one of south-east Asia's

biggest telecommunication �rms of using Facebook accounts to conduct a commercial dis-

information campaign seeking to discredit its competitors (Murphy and Reed, 2020). False

information campaigns can also target local and national communities and governments.

For instance, in 2014, elaborately orchestrated false information campaigns separately fab-

ricated an explosion at a chemical plant in Louisiana and an outbreak of the Ebola virus

in Atlanta, Georgia (Chen, 2015). And in 2020, the United States accused Russia, China,

and Iran of engaging in far-reaching false information campaigns on the causes, treatments,

and consequences of the novel COVID-19 pandemic (Barnes et al., 2020).

In this paper, we use data from a canonical example of organized false information �

the 2016 U.S. presidential election. We show how light-weight machine learning models

that utilize data at the time a website is registered can be used as an early warning signal

to identify domains that are likely to (i) produce false information, (ii) produce false in-

formation that is most associated with high levels of consumption, and (iii) abandon their

operations after an event of interest, in our case an election. We theorize and provide

suggestive evidence that domains abandoned after an event of interest are established by

entities seeking primarily to manipulate perceptions and outcomes of that event.

The prevalence of false information activity is well established in our setting. For

instance, researchers tracked a sample of 156 fake news stories distributed during the 2016

presidential election and found they were shared on social media over 37.6 million times in

the months leading up to the 2016 U.S. election (Allcott and Gentzkow, 2017). Importantly,

domain experts assert that successful methodologies from false information campaigns in

election settings will be utilized and adapted to other settings. The Financial Times quoted

Nathaniel Gleicher, head of Facebook's cyber security policy, as saying, �We would expect

other types of actors, such as corporate actors, to see these types of [electoral] disinformation

campaigns and follow that model� (Murphy and Reed, 2020). As a result, we believe that

our �ndings in this setting can also shed useful insights into other non-election settings.

False information detection is an active research area for many scholars and practition-

ers. Scholars have sought to shed light on motivations for false and deceptive information,
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including insights on why companies would post fake reviews on Yelp (Luca and Zervas,

2016) and the impact of social media in�uencers on information aggregation and the prop-

agation of deceptive information (Acemoglu et al., 2010). Other studies examine how false

information is promoted and shared on social networks (Del Vicario et al., 2016; Vosoughi

et al., 2018; Grinberg et al., 2019). Emerging work examines operational policies that

can inform the how social media platforms respond to false information (Candogan and

Drakopoulos, 2020; Papanastasiou, 2020).

The �rst automated e�orts to prevent the spread of disinformation largely focused on

linguistic characteristics of online content and the network characteristics of social media

proliferation (Conroy et al., 2015). Subsequent research has employed increasingly com-

plex textual models and user characteristics to identify false information (Shu et al., 2017;

Castelo et al., 2019). This prior work almost exclusively uses article text or social me-

dia content as the source of features in a variety of models. Our classi�ers, on the other

hand, rely only on seemingly benign information that is available at the time the domain

is registered, and is required of every domain on the internet. This means that it can be

implemented earlier than existing approaches, and even prior to the appearance of content

on the domain.

Purveyors of false information are shifting away from e�orts dominated by social media,

and are increasingly relying on the production and provision of false information articles on

website domains that appear to be legitimate news outlets. This can �exploit the credibility

of local journalism� (Coppins, 2020), while still employing social media as a means to

promote the false information. The New York Times cites experts who indicate that this

trend is fed by the realization that false information articles and the sites that host them

are more di�cult to identify, and thus, combat (Rosenberg and Barnes, 2020). Websites

are relatively easy to set up and costless to abandon, allowing the entities behind them to

be nimble and avoid countermeasures. And once false information is seeded into the digital

information environment, websites can rely on independent individuals with like-minded

objectives to disseminate links to that information on their social media networks. All of

this motivates our focus on false information websites, and our e�ort to develop a model

that can be used to identify false information domains early in their life cycle, before they
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have achieved their objectives.

Ferreting out false information is an asymmetric game that favors producers of content

over those seeking to mitigate it. The amount of e�ort required to combat online false

information using traditional text classi�cation tools is high, due in part to the massive

volume of text produced every day on the web. This contrasts sharply with the relatively

low amount of e�ort required to develop and publish false information. Trend Micro, a

cybersecurity company, analyzed scores of false information providers and report that such

services can be deployed quickly and cheaply�false information websites can be purchased

for about $3,000 and maintained with relevant fake content at a cost of $5,000 per month

(Gu et al., 2017). The existence of low-cost, agile false information providers reinforces

our objective to help counter them by developing a scalable and computationally e�cient

model.

We construct three classi�ers using two retrospective samples�domains that were iden-

ti�ed as being purveyors of false information and a random selection of contemporaneously

established domains. We train and test our classi�ers using data drawn from the registra-

tion of each domain with the International Corporation for Assigned Names and Numbers

(ICANN), the release date of false information articles, and the browsing history of a sample

of U.S. internet users.

Our �rst model relies exclusively on domain registration data to predict whether do-

mains will become purveyors of false information or not. Our approach is inspired by

Guzman and Stern (2015), who use company characteristics available at the time an en-

trepreneur registers her startup to predict which startups will be successful. Our second

model predicts an outcome based on false-information consumption derived from a novel

dataset of user browsing activity leading up to the 2016 U.S. election. Our third model

identi�es false information providers with a certain operating pro�le, which we argue may

be indicative of the domain's objective. In particular, we predict which false information

domains will cease operations shortly after the election, and theorize that this is a proxy

for domains whose primary objective was to manipulate the news environment or voter

behavior in the run-up to the election.

To summarize our results, we provide the speci�city (true positive rate) and sensitivity
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(true negative rate) of each of the models using a cut point of 0.7.1 We also provide the

area under the curve (AUC), a measure used to assess the performance of prediction models

with binary outcomes. Our classi�cation of whether a domain is a false information provider

yields values for speci�city and sensitivity of 92.0% and 96.2%, respectively, and the AUC

is 0.85. Our classi�cation of whether a false information provider's content is associated

with higher browsing activity yields values for speci�city and sensitivity of 94.1%, and

80.0%, and the AUC is 0.84. Finally, our classi�cation of whether a false information

provider discontinues operations shortly after the 2016 election yields values for speci�city

and sensitivity of 88.2% and 84.4%, and the AUC is 0.69.

Our early-identi�cation system can help policy makers deploy their limited resources

more rapidly and e�ectively by prioritizing domains for potential sanction or increased

monitoring. In this way, our approach can complement other, heavier-weight machine

learning models, such as text-based classi�ers. By using our early-identi�cation system

in conjunction with a staged escalation process and other validation tools, policy makers

can mitigate the possibility of taking action based on possible false positive classi�cations,

which are inherent in any machine learning system.

We make several contributions to the growing work around false information prediction.

First, by focusing on the website domains rather than social media, we are addressing a

resurgent and challenging front of false information campaigns. Second, our models use data

that is available at the time a domain is registered, thereby allowing for early identi�cation

of false information domains before they can get established. This data is required and

well-structured for any registered domain, which facilitates easier access and use. Finally,

our models employ machine learning tools that are e�cient and scalable, which facilitates

a rapid and potentially automated analysis. These contributions will help institutions that

are grappling with identifying and responding to false information, including regulatory

agencies, credible news providers, and technology and platform �rms.

1 Changing the false positive and false negative rates can be accomplished by changing the cut point.
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2 Data

Our analysis exploits a novel database provided by our research partner, the Mozilla Corpo-

ration, developer of the Firefox browser. Mozilla recruited U.S. Firefox users to participate

in an unrelated study during which their web browsing habits were monitored for a period

of time that coincided with the run-up to the 2016 election. On the eve of the election, there

were 2,680 users participating in the study. In the 30 weekdays prior to the election, those

participants had collectively visited 2,670,124 webpages. Of those visits, 26,310 (1.0% of

the total) were to false information sites. Mozilla provided us with data on daily browsing

activity classi�ed by the following domain types�false information, credible news, social

media,2 and all other.

We identify false information domains and content using a database provided by Allcott

and Gentzkow (2017), who aggregated articles that were con�rmed as being false by at

least one of the following fact-checking services: Snopes, Politifact, or Buzzfeed. The

authors describe the database as �a reasonable but probably not comprehensive sample of

the major fake news stories that circulated before the election.� (Allcott and Gentzkow

(2017); p. 219). After dropping articles that did not contain any domain information or

were registered after Election Day, we are left with a sample of 883 false information articles

hosted on 363 domains.

Our sample of general domains registered prior to the election was provided by Do-

mainTools, an online security company. The details of the sample generation process are

provided in the Online Appendix. DomainTools also furnished us with the domain regis-

tration information for all the domains in our sample. To obtain a website domain, one

must register it with ICANN, the nonpro�t that manages domains. A user who registers

a domain provides certain information, including the name of the domain and its exten-

sion (e.g. �.com� or �.org�) as well as the names and contact information for the registrant

and site, billing, and technical administrators. The registration date is also recorded and

attached to each record.

2Social media domains consisted Facebook, Twitter, LinkedIn, Instagram, Snapchat, and Pinterest.
These services represented approximately 94.3% of all social media visits in 2016 StatCounter (2016).
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2.1 Outcome Measures

We use three outcomes in our analyses. Our �rst outcome is whether a site is a false

information domain. This is generated using the observations identi�ed in Section 2, and

consists of 363 false information domains and 1,861 general domains.

Our second outcome is based on the relative e�cacy of each false information domain.

For each domain, we calculate the average number of visits captured by our Mozilla data

to all false information domains on days when the focal false information domain publishes

an article that appears in the Allcott and Gentzkow (2017) database.3 For example, if

a domain publishes false information articles on two days in our study that have 19 and

15 visits to false information domains by the participants in our data, respectively, then

the measure for this domain is 17 ((19+15)/2=17). For our second outcome, we identify

whether the resulting value for a domain is larger than the median value across all false

information domains.

Our third outcome is based on whether the domain discontinued operations as of June

2017, approximately seven months after the election. We determined this by visiting each

domain If the domain could not be resolved by the browser or there was some placeholder

landing page with text like �Buy this domain,� we concluded that the site had ceased

operations. We found that 96 of the domains (27.0%) met this criterion.

2.2 Feature Extraction

To create each of our prediction models, we generated a set of features from the domain

registration data. Speci�cally, we include a binary variable that equals �1� if there is an

individual or institutional name in the billing contact �eld. We add categorical variables for

the registrant name being an individual, an institution, or private, We include additional

categorical variables for the domain extension, registrar, registration state, and country.

To utilize the domain name information, we create a set of binary variables that equal

�1� when the domain included the following terms that pertain to the election: trump,

3 Our measure accounts for visits to all false information domains because it is common practice for
articles that break on one domain to receive coverage and even full reproduction on other domains. Similar
practices can be found in credible news outlets (Boczkowski, 2010), albeit not full reproduction of content.
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conservative, clinton, and liberal. We also create several date-related features, including

the registration date, year, year-squared, and individual year binary variables. Finally, we

create interactions between each of the year, year-squared, and 2016 indicators and all the

other non-date based features. This yields a total of 957 features4

3 Methods

To build our models, we employ a technique of variable selection and model �tting from

machine learning called LASSO (Friedman et al., 2010). LASSO is a form of penalized

regression, which e�ectively adds a penalty term to the standard ordinary least squares

(OLS) optimization problem that moves weights on features toward zero. The penalty is

imposed to avoid the problem of over�tting, which occurs when the model �ts the given

data well, but then performs poorly out of sample.

To assess the performance of the model, we employ 10-fold cross validation. Each model

is �t ten times, with each iteration using 90% of the total sample to �t the model. The �nal

10% of holdout data is used to assess the performance of the model. Each model yields a

prediction of the outcome that varies from zero to one.

4 Results

Each of our classi�er models provides a predicted probability of whether the domain is

classi�ed as the outcome and ranges from zero to one. From this continuous measure, we

can set a cut o� threshold, and then assess the speci�city (true positive rate) and sensitivity

(true negative rate) of the model. We describe the model performance at a threshold of 0.7;

that is, if the continuous predicted probability is greater than or equal to 0.7, we classify

it as being labelled by the appropriate outcome. For values less than 0.7, we classify it

as not being labelled with the appropriate outcome. For example, in our �rst model, we

classify a domain as being a false information producers if its continuous predicted value

is greater than or equal to 0.7. If the value is less than 0.7, we classify it as not being a

4 Note that the number of features in each analysis di�er for two reasons. First, we remove any date-
related features from our false information versus credible news model. Second, the samples di�er across
each analysis.
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false information producer. A higher value for the cuto� will result in a higher levels of

speci�city, at the expense of lower levels of sensitivity.

For each model, we also depict the receiver operating characteristic (ROC) curves. The

ROC curve visually depicts the tradeo�s between the true positive rate and the false positive

rate (or sensitivity and one minus the sensitivity). Each point on the curve represents the

two performance metrics for a chosen threshold. From the ROC curve, we compute the

area under the curve (AUC) metric used to assess model performance.

We conceive that, in practice, the �rst model can act as a �rst line of defense that

provides an early warning that identi�es likely false information providers. The analysis

would conceivably lead to the �agging of suspect domains for intervention, further data

collection, or escalated monitoring. Our next two analyses would be applied to domains

that were subsequently con�rmed to contain false information (perhaps by using human

readers or a text-based machine learning algorithm), and would assist with the deployment

of more robust policy responses.

4.1 Distinguishing False Information Domains

Our �rst model distinguishes which domains are purveyors of false information. This model

is applied against the full sample of 363 false information domains and 1,861 general do-

mains. We exclude date-related variables, in the event those variables would unduly advan-

tage our prediction model. Our results are slightly stronger if we include these variables.

The model includes 500 features and assigns non-zero weights whose absolute value exceeds

0.001 to 151 features. As depicted in Figure 1, the AUC achieved by the model is 0.85.

Using the 0.7 threshold, the model achieves speci�city and sensitivity of 92.0% and 96.2%,

respectively.

4.2 False Information Production on High Consumption Days

In our second analysis, we assess whether the level of false-information consumption in the

future varies by prior observable characteristics of false-information producers. We motivate

this question with insights from a model-free analysis from the six week period prior to the

2016 election. Using the 30 weekdays over that period (due to di�erences in creation
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and consumption of news between weekdays and weekends, in general as per Boczkowski

(2010)), we compile the number of visits per participant on each day (because the size of

the sample is not �xed) and use it as a proxy for attentiveness to false information on that

day. For each article published on a domain in our sample, we calculate the percentage

change in false-information consumption as the amount of false information consumed on

the publication date relative to the average of the amount of false information consumed

in the �ve surrounding weekdays. We can collapse this to a domain-level measure by

averaging the false information domain visits over all days that the producer generated a

false information article. Figure 2 is a sorted bar chart of this measure for 201 domains in our

study window.5 As expected, the change in false-information consumption is predominantly

positive when there is false-information production. Less expected, however, is the wide

variation in the percentage change in false-information consumption across producer-days.

The minimum of the percentage change in false-information consumption is −31.7% and

the maximum is 49.3%. The goal of our second model is to use domain registration data

to predict which false information domains produce articles on these higher consumption

days.

Our sample includes the 201 domains that published at least one false information article

during our study period. The domain registration dataset includes 431 features (including

an intercept), and our LASSO model assigns a non-negative weight to 188 features, of which

113 have an absolute value greater than 0.001. Figure 3a shows the ROC curve for this

model (AUC = 0.84). At the 0.7 threshold, speci�city and sensitivity are 94.1% and 80.0%,

respectively.

4.3 Domains that Discontinued Operations

Our next model is motivated by the observation that domains which discontinued their

operations shortly after the election were actually more successful at inducing browsing

activity before the election compared to domains that continued operations. To investigate

this issue, we manually check whether domains were still active as of June 2017. The

5 We note that the remaining false information domains from our sample do not appear in this analysis,
because they did not publish articles in the 30 weekdays period prior to the election.
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timing of our search allows for registration deactivation to take place when owners fail to

renew contracts that typically run annually or on a multi-year basis. We �nd that 96 of

the 363 false information domains in the dataset (27.0%) were no longer active. Using this

information, we categorize domains based on whether they discontinued operations shortly

after the election or remained an ongoing concern.

To highlight the operational e�ectiveness of discontinued domains, we include this cat-

egorization in a regression to estimate false-information consumption. The results are pre-

sented in Table 1. In this regression analysis, Discontinued Production captures the number

of false information articles produced on each day by domains that discontinued their op-

erations shortly after the election. Ongoing Production captures the number of false infor-

mation articles produced on each day by domains that maintained their operations. Social

Media Visits controls for the number of visits to social media domains. While it might

be expected that false-information producers that ceased operations were associated with

lower levels of false-information consumption, we �nd the opposite is true. The di�erence

between the coe�cient on Discontinued Production and the coe�cient on Ongoing Produc-

tion is positive and statistically signi�cant. This comparison is tested using a Chi-square

test whose test statistic values are presented in the table. This �nding does not conform

to prior categorizations of false-information producers as being motivated by economic or

ideological objectives (Allcott and Gentzkow, 2017).6 In the Discussion section, we argue

that this operational characteristic may identify producers that are instead motivated to

manipulate an event of interest, and therefore abandon their operations shortly after the

conclusion of the event.

From a policy perspective, such an ex-post identi�cation of sites that are discontinued

does not provide any actionable way of identifying which sites to sanction in advance. As

a result, we present a third prediction model, in which we predict whether the site will

eventually discontinue its operations, using all 363 false information domains from Allcott

and Gentzkow (2017). The model was performed on 431 features; LASSO assigned non-zero

weights to 144 features, of which 95 were assigned an absolute weight greater than 0.001.

6Economic actors are those with traditional �nancial incentives in the production of any good, and
ideological actors are those that produce content to promote a speci�c viewpoint. These types need not be
mutually exclusive.
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Figure 3b presents the ROC curve for this model (AUC = 0.69). At the 0.7 threshold,

speci�city and sensitivity are 88.2% and 84.4%, respectively.

5 Discussion

In this paper, we demonstrate that it is possible to develop machine learning models that

generate high quality classi�cations of false information providers based on immediately

available information, speci�cally data furnished at the time a domain is �rst registered

with regulatory agencies. False information providers have the ability to enter and leave

the marketplace quickly, and enjoy a low cost of production and operation. By developing

a light-weight, scalable model that relies on data that is available at the time a domain

is registered, we can help to counteract these advantages. Doing so is important because

false information a�ects our real, non-digital environment, including managerial decision

making, customer perceptions, election outcomes, and a host of personal and organizational

choices.

Our analyses may have broader applications beyond those that we explicitly identify.

Allcott and Gentzkow (2017) indicate that fake news producers are motivated by economic

(an interest in generating revenue, regardless of content type) or ideological (an interest in

promoting a particular viewpoint) considerations. A related, but potentially unique mo-

tivation is to manipulate the outcome of a particular event. Our third model, in which

we categorize producers based on whether they discontinued operations shortly after the

election, could be redeployed to identify false information providers with such motivations.

This is motivated by the observation that articles from discontinued domains were associ-

ated with signi�cantly more visits to false information domains prior to the election, raising

the question of why those false information providers would shut down a seemingly e�ec-

tive domain once the election ended. We think such operational behavior could serve as

a proxy for domains whose primary objective was to manipulate the news environment or

voter behavior in the run-up to the election.7 We believe that this model could be further

7 To add further support to this explanation, we note that of the 96 false-information domains that closed
shortly after the election, 86.5% were registered in 2015 or 2016. This compares with false-information
websites that remained live, where only 37.8% were registered in 2015 or 2016.
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improved with data on actual manipulators rather than the proxy that we employ.8

There are several ways in which future implementations of models based on our approach

can be improved with further research. First, a future e�ort may look at ensemble modeling

that includes alternative techniques, such as elastic nets, trees and random forests, and

mixture models. Second, future implementations may utilize a broader array of features

from registration data. For example, as more data becomes available (especially when the

test is performed surrounding a particular event), additional terms may be extracted from

domain names in continual updates of the model. Third, as an implementation of this type

of model becomes iterative, larger amounts of data would improve the predictive power.

Our results are achieved with a subset (relative to full browsing history data on all web

domains) of imperfect (relative to the information available to ICANN and governmental

agencies) data. Additional advances can be expected with better data. Finally, there is

an opportunity to complement our approach with unstructured text analysis techniques

(for instance, on the �rst few articles published on the site or the �about� page) to further

bolster the predictive power.

Policy makers must balance the need to restrict false information with the need to

inappropriately censure alternative views. Such tensions could be mitigated by using our

model as a �rst level �lter to identify suspect domains early and target them with more

comprehensive (albeit time consuming and expensive) analyses, such as text analysis. In

this way, our analysis can be used as a sorting / escalation step in conjunction with other

models and sources of information. Doing so can help to improve decision making in the

ongoing �ght against false information.
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Figure 1: Receiver operating characteristic (ROC) curves for false information classi�er
model
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Note: Performance results for our classi�er model predicting whether a domain is a false information
purveyor among news domains. The ROC curve presents the tradeo� between sensitivity and one minus
speci�city for cut points, ranging from zero to one. The area under the curve (AUC) is a computation
of the area under the ROC curve and represents the performance of the model.
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Figure 2: Average change in false-information consumption on the release date of a false
information article
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Note: n = 335. Each bar represents the average false-information consumption as a percent change over
the surrounding �ve days (from two days prior to two days after) of a false information article on the
date it was published.

Table 1: Relationship between false-information production and consumption, by pro-
ducer's post-election operational status

(1) (2) (3)
DV: False Information Consumption

Discontinued Production 0.280 0.066 0.072
(0.135) (0.108) (0.103)

Ongoing Production -0.017 0.012 0.009
(0.034) (0.027) (0.029)

Social Media Visits 0.067 0.015 0.017
(0.021) (0.010) (0.010)

Constant -1.408 -0.766 -0.781
(0.196) (0.122) (0.148)

Calendar week dummies Yes Yes Yes
Day of week dummies Yes Yes Yes

Chi-Sq Test of discontinued=ongoing 8.94 6.42 6.08
Obs 43,715 21,713 43,715
Users 2,680 1,172 2,680
Log likelihood -26,964.3 -16,017.6 -21,747.3

Note: This table shows results from Poisson models with robust standard errors (in parentheses) clustered
at the user level. Columns 1, 2, and 3 present results from a pooled, �xed e�ects, and random e�ects
model, respectively. The dependent variable is a count of the number of false information websites
visited by a user on the focal day.
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Figure 3: Receiver operating characteristic (ROC) curves for false information categoriza-
tion classi�er models
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(b) Discontinued domains classi�er
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Note: (left) Performance results for our classi�er model predicting whether a false information domain is
e�cient in its production of false information.
(right) Performance results for our classi�er model predicting whether a domain discontinues operations
shortly after the 2016 US election.
The ROC curve presents the tradeo� between sensitivity and one minus speci�city for cut points, ranging
from zero to one. The area under the curve (AUC) is a computation of the area under the ROC curve
and represents the performance of the model.
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Online Appendix

A0.1 Sample of General Domains (not false information)

According to DomainTools, 415 million domains were registered from 2006 to 2016. Of

those, 70 million were registered in 2016. The following steps were followed to arrive at a

sample of general domains for inclusion in our analysis:

1. DomainTools generated a random sample of 75,000 domains whose registration pe-

riods roughly approximated the registration periods of the known false information

domains. The registration year for the false information domains in our sample are

concentrated in 2016, and otherwise dispersed from 2006 through 2015. DomainTools

randomly selected 30,000 domains from 2016 registrants and 45,000 domains from

2006-2015 registrants

2. From this set of 75,000 domains, we randomly sampled 4,000 domains for inclusion

in our analysis.

3. We used the DomainTools �Who Is History� application programming interface (API)

to download registration information on the 4,000 domains, from the �rst registration

event of the domain. Note that DomainTools also maintains information on subse-

quent renewals, expirations, updates, and third-party acquisitions of each domain.

4. Among the 4,000 domains, complete information was available or could be extracted

for 1,861 domains. This represents our �nal sample of general domains.

A0.2 Data Summary

We summarize the data employed in the regression analysis described in Section 4.3.

Individual-level summary statistics�false-information domain visits and social media visits�

are provided in Table A1. Summary statistics for day-level variables�publications on do-

mains that were eventually discontinued and on domains that continued to operate�are

provided in Table A2.
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Table A1: Individual-level summary statistics

Mean S.D. Median Min Max

false information consumption 0.60 3.74 0.00 0.00 187.00
social media visits 3.15 22.37 0.00 0.00 1,404.00

Note: n = 43, 715 user-weekdays for 2,680 users.

Table A2: Daily-level summary statistics

Mean S.D. Median Min Max

discontinued false information production 0.23 0.40 0.10 0.00 2.00
ongoing false information production 1.09 1.40 0.80 0.00 6.00

Note: n = 30 weekdays. Measures are scaled by a factor of 10.
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